Do you want to publish a course? Click here

Magneto-optical Kerr effect in spin split two-dimensional massive Dirac materials

217   0   0.0 ( 0 )
 Added by Goncalo Catarina
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional (2D) massive Dirac electrons possess a finite Berry curvature, with Chern number $pm 1/2$, that entails both a quantized dc Hall response and a subgap full-quarter Kerr rotation. The observation of these effects in 2D massive Dirac materials such as gapped graphene, hexagonal boron nitride or transition metal dichalcogenides (TMDs) is obscured by the fact that Dirac cones come in pairs with opposite sign Berry curvatures, leading to a vanishing Chern number. Here, we show that the presence of spin-orbit interactions, combined with an exchange spin splitting induced either by diluted magnetic impurities or by proximity to a ferromagnetic insulator, gives origin to a net magneto-optical Kerr effect in such systems. We focus on the case of TMD monolayers and study the dependence of Kerr rotation on frequency and exchange spin splitting. The role of the substrate is included in the theory and found to critically affect the results. Our calculations indicate that state-of-the-art magneto-optical Kerr spectroscopy can detect a single magnetic impurity in diluted magnetic TMDs.



rate research

Read More

We report a magneto-optical Kerr effect study of the collective magnetic response of artificial square spin ice, a lithographically-defined array of single-domain ferromagnetic islands. We find that the anisotropic inter-island interactions lead to a non-monotonic angular dependence of the array coercive field. Comparisons with micromagnetic simulations indicate that the two perpendicular sublattices exhibit distinct responses to island edge roughness, which clearly influence the magnetization reversal process. Furthermore, such comparisons demonstrate that disorder associated with roughness in the island edges plays a hitherto unrecognized but essential role in the collective behavior of these systems.
We analyze the valley selection rules for optical transitions from impurity states to the conduction band in two-dimensional Dirac materials, taking a monolayer of MoS2 as an example. We employ the analytical model of a shallow impurity potential which localizes electrons described by a spinor wave function, and, first, find the system eigenstates taking into account the presence of two valleys in the Brillouin zone. Then, we find the spectrum of the absorbance and calculate the photon-drag electric current due to the impurity-band transitions, drawing the general conclusions regarding the valley optical selection rules for the impurity-band optical transitions in gapped Dirac materials.
In this paper we develop the excitonic theory of Kerr rotation angle in a two-dimensional (2D) transition metal dichalcogenide at zero magnetic field. The finite Kerr angle is induced by the interplay between spin-orbit splitting and proximity exchange coupling due to the presence of a ferromagnet. We compare the excitonic effect with the single particle theory approach. We show that the excitonic properties of the 2D material lead to a dramatic change in the frequency dependence of the optical response function. We also find that the excitonic corrections enhance the optical response by a factor of two in the case of MoS2 in proximity to a Cobalt thin film.
134 - Bo Fu , Huan-Wen Wang , 2019
Massive Dirac fermions break the chiral symmetry explicitly and also make the Berry curvature of the band structure non-Abelian. By utilizing the Greens function technique, we develop a microscopic theory to establish a set of quantum diffusive equations for massive Dirac materials in the presence of electric and magnetic fields. It is found that the longitudinal magnetoresistance is always negative and quadratic in the magnetic field, and decays quickly with the mass. The theory is applicable to the systems with non-Abelian Berry curvature and resolves the puzzles of anomalous magnetotransport properties measured in topological materials.
In this work the above-band gap absorption spectrum in two-dimensional Dirac materials is calculated with account for the interaction between the photocarriers. Both the screened Rytova-Keldysh and pure Coulomb attraction potentials between the electron and hole are used in the study. We find that, in the materials under consideration, the interaction enhances the absorbance in the narrow interband edge region, in a sharp contrast to the band model with the parabolic free-carrier energy dispersion. We develop an approximation of the weak interaction which allows us to reproduce the main features of the exactly calculated Sommerfeld factor. We show a substantial reduction of this factor at higher frequencies due to the single-particle energy renormalization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا