No Arabic abstract
The generalized Langevin equation (GLE) overcomes the limiting Markov approximation of the Langevin equation by an incorporated memory kernel and can be used to model various stochastic processes in many fields of science ranging from climate modeling over neuroscience to finance. Generally, Bayesian estimation facilitates the determination of both suitable model parameters and their credibility for a measured time series in a straightforward way. In this work we develop a realization of this estimation technique for the GLE in the case of white noise. We assume piecewise constant drift and diffusion functions and represent the characteristics of the data set by only a few coefficients, which leads to a numerically efficient procedure. The kernel function is an arbitrary time-discrete function with a fixed length $K$. We show how to determine a reasonable value of $K$ based on the data. We illustrate the abilities of both the method and the model by an example from turbulence.
Langevin models are frequently used to model various stochastic processes in different fields of natural and social sciences. They are adapted to measured data by estimation techniques such as maximum likelihood estimation, Markov chain Monte Carlo methods, or the non-parametric direct estimation method introduced by Friedrich et al. The latter has the distinction of being very effective in the context of large data sets. Due to their $delta$-correlated noise, standard Langevin models are limited to Markovian dynamics. A non-Markovian Langevin model can be formulated by introducing a hidden component that realizes correlated noise. For the estimation of such a partially observed diffusion a different version of the direct estimation method was introduced by Lehle et al. However, this procedure includes the limitation that the correlation length of the noise component is small compared to that of the measured component. In this work we propose another version of the direct estimation method that does not include this restriction. Via this method it is possible to deal with large data sets of a wider range of examples in an effective way. We discuss the abilities of the proposed procedure using several synthetic examples.
A general method is proposed which allows one to estimate drift and diffusion coefficients of a stochastic process governed by a Langevin equation. It extends a previously devised approach [R. Friedrich et al., Physics Letters A 271, 217 (2000)], which requires sufficiently high sampling rates. The analysis is based on an iterative procedure minimizing the Kullback-Leibler distance between measured and estimated two time joint probability distributions of the process.
Fitting a simplifying model with several parameters to real data of complex objects is a highly nontrivial task, but enables the possibility to get insights into the objects physics. Here, we present a method to infer the parameters of the model, the model error as well as the statistics of the model error. This method relies on the usage of many data sets in a simultaneous analysis in order to overcome the problems caused by the degeneracy between model parameters and model error. Errors in the modeling of the measurement instrument can be absorbed in the model error allowing for applications with complex instruments.
We present a Bayesian estimation analysis for a particular trace gas detection technique with species separation provided by differential diffusion. The proposed method collects a sample containing multiple gas species into a common volume, and then allows it to diffuse across a linear array of optical absorption detectors, using, for example, high-finesse Fabry-Perot cavities. The estimation procedure assumes that all gas parameters (e.g. diffusion constants, optical cross sections) are known except for the number population of each species, which are determined from the time-of-flight absorption profiles in each detector.
Using the latest numerical simulations of rotating stellar core collapse, we present a Bayesian framework to extract the physical information encoded in noisy gravitational wave signals. We fit Bayesian principal component regression models with known and unknown signal arrival times to reconstruct gravitational wave signals, and subsequently fit known astrophysical parameters on the posterior means of the principal component coefficients using a linear model. We predict the ratio of rotational kinetic energy to gravitational energy of the inner core at bounce by sampling from the posterior predictive distribution, and find that these predictions are generally very close to the true parameter values, with $90%$ credible intervals $sim 0.04$ and $sim 0.06$ wide for the known and unknown arrival time models respectively. Two supervised machine learning methods are implemented to classify precollapse differential rotation, and we find that these methods discriminate rapidly rotating progenitors particularly well. We also introduce a constrained optimization approach to model selection to find an optimal number of principal components in the signal reconstruction step. Using this approach, we select 14 principal components as the most parsimonious model.