No Arabic abstract
This paper introduces the concept of spin-orbit-torque-MRAM (SOT-MRAM) based physical unclonable function (PUF). The secret of the PUF is stored into a random state of a matrix of perpendicular SOT-MRAMs. Here, we show experimentally and with micromagnetic simulations that this random state is driven by the intrinsic nonlinear dynamics of the free layer of the memory excited by the SOT. In detail, a large enough current drives the magnetization along an in-plane direction. Once the current is removed, the in-plane magnetic state becomes unstable evolving towards one of the two perpendicular stable configurations randomly. In addition, an hybrid CMOS/spintronics model is used to evaluate the electrical characteristics of a PUF realized with an array of 16x16 SOT-MRAM cells. Beyond robustness against voltage and temperature variations, hardware authentication based on this PUF scheme has additional advantages over other PUF technologies such as non-volatility (no power consumption in standby mode), reconfigurability (the secret can be rewritten), and scalability. We believe that this work is a step forward the design of spintronic devices for application in security.
Reducing energy dissipation while increasing speed in computation and memory is a long-standing challenge for spintronics research. In the last 20 years, femtosecond lasers have emerged as a tool to control the magnetization in specific magnetic materials at the picosecond timescale. However, the use of ultrafast optics in integrated circuits and memories would require a major paradigm shift. An ultrafast electrical control of the magnetization is far preferable for integrated systems. Here we demonstrate reliable and deterministic control of the out-of-plane magnetization of a 1 nm-thick Co layer with single 6 ps-wide electrical pulses that induce spin-orbit torques on the magnetization. We can monitor the ultrafast magnetization dynamics due to the spin-orbit torques on sub-picosecond timescales, thus far accessible only by numerical simulations. Due to the short duration of our pulses, we enter a counter-intuitive regime of switching where heat dissipation assists the reversal. Moreover, we estimate a low energy cost to switch the magnetization, projecting to below 1fJ for a (20 nm)^3 cell. These experiments prove that spintronic phenomena can be exploited on picosecond time-scales for full magnetic control and should launch a new regime of ultrafast spin torque studies and applications.
Spin-orbit torque (SOT) can drive sustained spin wave (SW) auto-oscillations in a class of emerging microwave devices known as spin Hall nano-oscillators (SHNOs), which have highly non-linear properties governing robust mutual synchronization at frequencies directly amenable to high-speed neuromorphic computing. However, all demonstrations have relied on localized SW modes interacting through dipolar coupling and/or direct exchange. As nanomagnonics requires propagating SWs for data transfer, and additional computational functionality can be achieved using SW interference, SOT driven propagating SWs would be highly advantageous. Here, we demonstrate how perpendicular magnetic anisotropy can raise the frequency of SOT driven auto-oscillations in magnetic nano-constrictions well above the SW gap, resulting in the efficient generation of field and current tunable propagating SWs. Our demonstration greatly extends the functionality and design freedom of SHNOs enabling long range SOT driven SW propagation for nanomagnonics, SW logic, and neuro-morphic computing, directly compatible with CMOS technology.
Physical unclonable functions (PUFs) exploit the intrinsic complexity and irreproducibility of physical systems to generate secret information. PUFs have the potential to provide fundamentally higher security than traditional cryptographic methods by preventing the cloning of identities and the extraction of secret keys. One unique and exciting opportunity is that of using the super-high information content (SHIC) capability of nanocrossbar architecture as well as the high resistance programming variation of resistive memories to develop a highly secure on-chip PUFs for extremely resource constrained devices characterized by limited power and area budgets such as passive Radio Frequency Identification (RFID) devices. We show how to implement PUF based on nano-scale memristive (resistive memory) devices (mrPUF). Our proposed architecture significantly increased the number of possible challenge-response pairs (CRPs), while also consuming relatively lesser power (around 70 uW). The presented approach can be used in other silicon-based PUFs as well.
We report on investigation of spin Hall magnetoresistance sensor based on NiFe/AuxPt1-x bilayers. Compared to NiFe/Pt, the NiFe/AuxPt1-x sensor exhibits a much lower power consumption (reduced by about 57%), due to 80% enhancement of spin-orbit torque efficiency of AuxPt1-x at an optimum composition of x = 0.19 as compared to pure Pt. The enhanced spin-orbit torque efficiency allows to increase the thickness of NiFe from 1.8 nm to 2.5 nm without significantly increasing the power consumption. We show that, by increasing the NiFe thickness, we were able to improve the working field range (0.86 Oe), operation temperature range (150 degree C) and detectivity (0.71 nT/sqrt(Hz) at 1 Hz) of the sensor, which is important for practical applications.
A unique set of characteristics are packed in emerging nonvolatile reduction-oxidation (redox)-based resistive switching memories (ReRAMs) such as their underlying stochastic switching processes alongside their intrinsic highly nonlinear current-voltage characteristic, which in addition to known nano-fabrication process variation make them a promising candidate for the next generation of low-cost, low-power, tiny and secure Physically Unclonable Functions (PUFs). This paper takes advantage of this otherwise disadvantageous ReRAM feature using a combination of novel architectural and peripheral circuitry. We present a physical one-way function, nonlinear resistive Physical Unclonable Function (nrPUF), potentially applicable in variety of cyber-physical security applications given its performance characteristics. We experimentally verified performance of Valency Change Mechanism (VCM)-based ReRAM in nano-fabricated crossbar arrays across multiple dies and runs. In addition to a massive pool of Challenge-Response Pairs (CRPs), using a combination of experimental and simulation, our proposed PUF shows a reliability of 98.67%, a uniqueness of 49.85%, a diffuseness of 49.86%, a uniformity of 47.28%, and a bit-aliasing of 47.48%.