No Arabic abstract
A brief illustrative discussion of the shadows of black holes at local and cosmological distances is presented. Starting from definition of the term and discussion of recent observations, we then investigate shadows at large, cosmological distances. On a cosmological scale, the size of shadow observed by comoving observer is expected to be affected by cosmic expansion. Exact analytical solution for the shadow angular size of Schwarzschild black hole in de Sitter universe was found. Additionally, an approximate method was presented, based on using angular size redshift relation. This approach is appropriate for general case of any multicomponent universe (with matter, radiation and dark energy). It was shown, that supermassive black holes at cosmological distances in universe with matter may give the shadow size comparable with the shadow size in M87, and in the center of our Galaxy.
Cosmic expansion is expected to influence on the size of black hole shadow observed by comoving observer. Except the simplest case of Schwarzschild black hole in de Sitter universe, analytical approach for calculation of shadow size in expanding universe is still not developed. In this paper we present approximate method based on using angular size redshift relation. This approach is appropriate for general case of any multicomponent universe (with matter, radiation and dark energy). In particular, we have shown that supermassive black holes at large cosmological distances in the universe with matter may give a shadow size approaching to the shadow size of the black hole in the center of our galaxy, and present sensitivity limits.
We present the shape of the black hole shadow on the standard background screen as it is registered by the distant observer. The screen is an infinite plane, emitting the quanta uniformly distributed to a hemisphere. The source of emission is considered to be optically thin and optically thick. It is shown that the shape of a black hole shadow depends crucially on the angle between the plane and the view line to the distant observer. The shadow shapes for the different values of this angle are also presented. Both Schwarzschild and Kerr metrics are considered.
The motion of photons around black holes determines the shape of shadow and match the ringdown properties of a perturbed black hole. Observations of shadows and ringdown waveforms will reveal the nature of black holes. In this paper, we study the motion of photons in a general parametrized metric beyond the Kerr hypothesis. We investigated the radius and frequency of the photon circular orbits on the equatorial plane and obtained fitted formula with varied parameters. The Lyapunov exponent which connects to the decay rate of the ringdown amplitude is also calculated. We also analyzed the shape of shadow with full parameters of the generally axisymmetric metric. Our results imply the potential constraint on black hole parameters by combining the Event Horizon Telescope and gravitational wave observations in the future.
We analytically investigate the influence of a cosmic expansion on the shadow of the Schwarzschild black hole. We suppose that the expansion is driven by a cosmological constant only and use the Kottler (or Schwarzschild-deSitter) spacetime as a model for a Schwarzschild black hole embedded in a deSitter universe. We calculate the angular radius of the shadow for an observer who is comoving with the cosmic expansion. It is found that the angular radius of the shadow shrinks to a non-zero finite value if the comoving observer approaches infinity.
Both cosmological expansion and black holes are ubiquitous features of our observable Universe, yet exact solutions connecting the two have remained elusive. To this end, we study self-gravitating classical fields within dynamical spherically symmetric solutions that can describe black holes in an expanding universe. After attempting a perturbative approach of a known black-hole solution with scalar hair, we show by exact methods that the unique scalar field action with first-order derivatives that can source shear-free expansion around a black hole requires noncanonical kinetic terms. The resulting action is an incompressible limit of k-essence, otherwise known as the cuscuton theory, and the spacetime it describes is the McVittie metric. We further show that this solution is an exact solution to the vacuum Hov{r}ava-Lifshitz gravity with anisotropic Weyl symmetry.