We analytically investigate the influence of a cosmic expansion on the shadow of the Schwarzschild black hole. We suppose that the expansion is driven by a cosmological constant only and use the Kottler (or Schwarzschild-deSitter) spacetime as a model for a Schwarzschild black hole embedded in a deSitter universe. We calculate the angular radius of the shadow for an observer who is comoving with the cosmic expansion. It is found that the angular radius of the shadow shrinks to a non-zero finite value if the comoving observer approaches infinity.
Cosmic expansion is expected to influence on the size of black hole shadow observed by comoving observer. Except the simplest case of Schwarzschild black hole in de Sitter universe, analytical approach for calculation of shadow size in expanding universe is still not developed. In this paper we present approximate method based on using angular size redshift relation. This approach is appropriate for general case of any multicomponent universe (with matter, radiation and dark energy). In particular, we have shown that supermassive black holes at large cosmological distances in the universe with matter may give a shadow size approaching to the shadow size of the black hole in the center of our galaxy, and present sensitivity limits.
A scalar field non-minimally coupled to certain geometric [or matter] invariants which are sourced by [electro]vacuum black holes (BHs) may spontaneously grow around the latter, due to a tachyonic instability. This process is expected to lead to a new, dynamically preferred, equilibrium state: a scalarised BH. The most studied geometric [matter] source term for such spontaneous BH scalarisation is the Gauss-Bonnet quadratic curvature [Maxwell invariant]. This phenomenon has been mostly analysed for asymptotically flat spacetimes. Here we consider the impact of a positive cosmological constant, which introduces a cosmological horizon. The cosmological constant does not change the local conditions on the scalar coupling for a tachyonic instability of the scalar-free BHs to emerge. But it leaves a significant imprint on the possible new scalarised BHs. It is shown that no scalarised BH solutions exist, under a smoothness assumption, if the scalar field is confined between the BH and cosmological horizons. Admitting the scalar field can extend beyond the cosmological horizon, we construct new scalarised BHs. These are asymptotically de Sitter in the (matter) Einstein-Maxwell-scalar model, with only mild difference with respect to their asymptotically flat counterparts. But in the (geometric) extended-scalar-tensor-Gauss-Bonnet-scalar model, they have necessarily non-standard asymptotics, as the tachyonic instability dominates in the far field. This interpretation is supported by the analysis of a test tachyon on a de Sitter background.
The cosmological constant if considered as a fundamental constant, provides an information treatment for gravitation problems, both cosmological and of black holes. The efficiency of that approach is shown via gedanken experiments for the information behavior of the horizons for Schwarzschild-de Sitter and Kerr-de Sitter metrics. A notion of entropy regarding any observer and in all possible non-extreme black hole solutions is suggested, linked also to Bekenstein bound. The suggested information approach forbids the existence of naked singularities.
Theoretically, the running of the cosmological constant in the IR region is not ruled out. On the other hand, from the QFT viewpoint, the energy released due to the variation of the cosmological constant in the late universe cannot go to the matter sector. For this reason, the phenomenological bounds on such a running are not sufficiently restrictive. The situation can be different in the early universe when the gravitational field was sufficiently strong to provide an efficient creation of particles from the vacuum. We develop a framework for systematically exploring this ossibility. It is supposed that the running occurs in the epoch when the Dark Matter already decoupled and is expanding adiabatically, while baryons are approximately massless and can be abundantly created from vacuum due to the decay of vacuum energy. By using the handy model of Reduced Relativistic Gas for describing the Dark Matter, we consider the dynamics of both cosmic background and linear perturbations and evaluate the impact of the vacuum decay on the matter power spectrum and to the first CMB peak. Additionally, using the combined data of CMB+BAO+SNIa we find the best fit values for the free parameters of our model.
We investigate analytically and numerically the orbits of spinning particles around black holes in the post Newtonian limit and in the presence of cosmic expansion. We show that orbits that are circular in the absence of spin, get deformed when the orbiting particle has spin. We show that the origin of this deformation is twofold: a. the background expansion rate which induces an attractive (repulsive) interaction due to the cosmic background fluid when the expansion is decelerating (accelerating) and b. a spin-orbit interaction which can be attractive or repulsive depending on the relative orientation between spin and orbital angular momentum and on the expansion rate.
Volker Perlick
,Oleg Yu. Tsupko
,Gennady S. Bisnovatyi-Kogan
.
(2018)
.
"Black hole shadow in an expanding universe with a cosmological constant"
.
Oleg Tsupko
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا