Do you want to publish a course? Click here

Federated Evaluation of On-device Personalization

338   0   0.0 ( 0 )
 Added by Kangkang Wang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Federated learning is a distributed, on-device computation framework that enables training global models without exporting sensitive user data to servers. In this work, we describe methods to extend the federation framework to evaluate strategies for personalization of global models. We present tools to analyze the effects of personalization and evaluate conditions under which personalization yields desirable models. We report on our experiments personalizing a language model for a virtual keyboard for smartphones with a population of tens of millions of users. We show that a significant fraction of users benefit from personalization.

rate research

Read More

Federated Learning (FL) allows edge devices to collaboratively learn a shared prediction model while keeping their training data on the device, thereby decoupling the ability to do machine learning from the need to store data in the cloud. Despite the algorithmic advancements in FL, the support for on-device training of FL algorithms on edge devices remains poor. In this paper, we present an exploration of on-device FL on various smartphones and embedded devices using the Flower framework. We also evaluate the system costs of on-device FL and discuss how this quantification could be used to design more efficient FL algorithms.
On-device Deep Neural Networks (DNNs) have recently gained more attention due to the increasing computing power of the mobile devices and the number of applications in Computer Vision (CV), Natural Language Processing (NLP), and Internet of Things (IoTs). Unfortunately, the existing efficient convolutional neural network (CNN) architectures designed for CV tasks are not directly applicable to NLP tasks and the tiny Recurrent Neural Network (RNN) architectures have been designed primarily for IoT applications. In NLP applications, although model compression has seen initial success in on-device text classification, there are at least three major challenges yet to be addressed: adversarial robustness, explainability, and personalization. Here we attempt to tackle these challenges by designing a new training scheme for model compression and adversarial robustness, including the optimization of an explainable feature mapping objective, a knowledge distillation objective, and an adversarially robustness objective. The resulting compressed model is personalized using on-device private training data via fine-tuning. We perform extensive experiments to compare our approach with both compact RNN (e.g., FastGRNN) and compressed RNN (e.g., PRADO) architectures in both natural and adversarial NLP test settings.
Traditionally, federated learning (FL) aims to train a single global model while collaboratively using multiple clients and a server. Two natural challenges that FL algorithms face are heterogeneity in data across clients and collaboration of clients with {em diverse resources}. In this work, we introduce a textit{quantized} and textit{personalized} FL algorithm QuPeD that facilitates collective (personalized model compression) training via textit{knowledge distillation} (KD) among clients who have access to heterogeneous data and resources. For personalization, we allow clients to learn textit{compressed personalized models} with different quantization parameters and model dimensions/structures. Towards this, first we propose an algorithm for learning quantized models through a relaxed optimization problem, where quantization values are also optimized over. When each client participating in the (federated) learning process has different requirements for the compressed model (both in model dimension and precision), we formulate a compressed personalization framework by introducing knowledge distillation loss for local client objectives collaborating through a global model. We develop an alternating proximal gradient update for solving this compressed personalization problem, and analyze its convergence properties. Numerically, we validate that QuPeD outperforms competing personalized FL methods, FedAvg, and local training of clients in various heterogeneous settings.
Federated learning (FL) is becoming a popular paradigm for collaborative learning over distributed, private datasets owned by non-trusting entities. FL has seen successful deployment in production environments, and it has been adopted in services such as virtual keyboards, auto-completion, item recommendation, and several IoT applications. However, FL comes with the challenge of performing training over largely heterogeneous datasets, devices, and networks that are out of the control of the centralized FL server. Motivated by this inherent setting, we make a first step towards characterizing the impact of device and behavioral heterogeneity on the trained model. We conduct an extensive empirical study spanning close to 1.5K unique configurations on five popular FL benchmarks. Our analysis shows that these sources of heterogeneity have a major impact on both model performance and fairness, thus sheds light on the importance of considering heterogeneity in FL system design.
Federated learning can be a promising solution for enabling IoT cybersecurity (i.e., anomaly detection in the IoT environment) while preserving data privacy and mitigating the high communication/storage overhead (e.g., high-frequency data from time-series sensors) of centralized over-the-cloud approaches. In this paper, to further push forward this direction with a comprehensive study in both algorithm and system design, we build FedIoT platform that contains FedDetect algorithm for on-device anomaly data detection and a system design for realistic evaluation of federated learning on IoT devices. Furthermore, the proposed FedDetect learning framework improves the performance by utilizing a local adaptive optimizer (e.g., Adam) and a cross-round learning rate scheduler. In a network of realistic IoT devices (Raspberry PI), we evaluate FedIoT platform and FedDetect algorithm in both model and system performance. Our results demonstrate the efficacy of federated learning in detecting a wider range of attack types occurred at multiple devices. The system efficiency analysis indicates that both end-to-end training time and memory cost are affordable and promising for resource-constrained IoT devices. The source code is publicly available at https://github.com/FedML-AI/FedIoT

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا