Do you want to publish a course? Click here

Adversarially Robust and Explainable Model Compression with On-Device Personalization for Text Classification

83   0   0.0 ( 0 )
 Added by Yao Qiang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

On-device Deep Neural Networks (DNNs) have recently gained more attention due to the increasing computing power of the mobile devices and the number of applications in Computer Vision (CV), Natural Language Processing (NLP), and Internet of Things (IoTs). Unfortunately, the existing efficient convolutional neural network (CNN) architectures designed for CV tasks are not directly applicable to NLP tasks and the tiny Recurrent Neural Network (RNN) architectures have been designed primarily for IoT applications. In NLP applications, although model compression has seen initial success in on-device text classification, there are at least three major challenges yet to be addressed: adversarial robustness, explainability, and personalization. Here we attempt to tackle these challenges by designing a new training scheme for model compression and adversarial robustness, including the optimization of an explainable feature mapping objective, a knowledge distillation objective, and an adversarially robustness objective. The resulting compressed model is personalized using on-device private training data via fine-tuning. We perform extensive experiments to compare our approach with both compact RNN (e.g., FastGRNN) and compressed RNN (e.g., PRADO) architectures in both natural and adversarial NLP test settings.



rate research

Read More

Despite of the pervasive existence of multi-label evasion attack, it is an open yet essential problem to characterize the origin of the adversarial vulnerability of a multi-label learning system and assess its attackability. In this study, we focus on non-targeted evasion attack against multi-label classifiers. The goal of the threat is to cause miss-classification with respect to as many labels as possible, with the same input perturbation. Our work gains in-depth understanding about the multi-label adversarial attack by first characterizing the transferability of the attack based on the functional properties of the multi-label classifier. We unveil how the transferability level of the attack determines the attackability of the classifier via establishing an information-theoretic analysis of the adversarial risk. Furthermore, we propose a transferability-centered attackability assessment, named Soft Attackability Estimator (SAE), to evaluate the intrinsic vulnerability level of the targeted multi-label classifier. This estimator is then integrated as a transferability-tuning regularization term into the multi-label learning paradigm to achieve adversarially robust classification. The experimental study on real-world data echos the theoretical analysis and verify the validity of the transferability-regularized multi-label learning method.
Federated learning is a distributed, on-device computation framework that enables training global models without exporting sensitive user data to servers. In this work, we describe methods to extend the federation framework to evaluate strategies for personalization of global models. We present tools to analyze the effects of personalization and evaluate conditions under which personalization yields desirable models. We report on our experiments personalizing a language model for a virtual keyboard for smartphones with a population of tens of millions of users. We show that a significant fraction of users benefit from personalization.
Acoustic Scene Classification (ASC) aims to classify the environment in which the audio signals are recorded. Recently, Convolutional Neural Networks (CNNs) have been successfully applied to ASC. However, the data distributions of the audio signals recorded with multiple devices are different. There has been little research on the training of robust neural networks on acoustic scene datasets recorded with multiple devices, and on explaining the operation of the internal layers of the neural networks. In this article, we focus on training and explaining device-robust CNNs on multi-device acoustic scene data. We propose conditional atrous CNNs with attention for multi-device ASC. Our proposed system contains an ASC branch and a device classification branch, both modelled by CNNs. We visualise and analyse the intermediate layers of the atrous CNNs. A time-frequency attention mechanism is employed to analyse the contribution of each time-frequency bin of the feature maps in the CNNs. On the Detection and Classification of Acoustic Scenes and Events (DCASE) 2018 ASC dataset, recorded with three devices, our proposed model performs significantly better than CNNs trained on single-device data.
Adversarially robust classification seeks a classifier that is insensitive to adversarial perturbations of test patterns. This problem is often formulated via a minimax objective, where the target loss is the worst-case value of the 0-1 loss subject to a bound on the size of perturbation. Recent work has proposed convex surrogates for the adversarial 0-1 loss, in an effort to make optimization more tractable. A primary question is that of consistency, that is, whether minimization of the surrogate risk implies minimization of the adversarial 0-1 risk. In this work, we analyze this question through the lens of calibration, which is a pointwise notion of consistency. We show that no convex surrogate loss is calibrated with respect to the adversarial 0-1 loss when restricted to the class of linear models. We further introduce a class of nonconvex losses and offer necessary and sufficient conditions for losses in this class to be calibrated. We also show that if the underlying distribution satisfies Massarts noise condition, convex losses can also be calibrated in the adversarial setting.
Many machine learning models are vulnerable to adversarial attacks; for example, adding adversarial perturbations that are imperceptible to humans can often make machine learning models produce wrong predictions with high confidence. Moreover, although we may obtain robust models on the training dataset via adversarial training, in some problems the learned models cannot generalize well to the test data. In this paper, we focus on $ell_infty$ attacks, and study the adversarially robust generalization problem through the lens of Rademacher complexity. For binary linear classifiers, we prove tight bounds for the adversarial Rademacher complexity, and show that the adversarial Rademacher complexity is never smaller than its natural counterpart, and it has an unavoidable dimension dependence, unless the weight vector has bounded $ell_1$ norm. The results also extend to multi-class linear classifiers. For (nonlinear) neural networks, we show that the dimension dependence in the adversarial Rademacher complexity also exists. We further consider a surrogate adversarial loss for one-hidden layer ReLU network and prove margin bounds for this setting. Our results indicate that having $ell_1$ norm constraints on the weight matrices might be a potential way to improve generalization in the adversarial setting. We demonstrate experimental results that validate our theoretical findings.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا