Do you want to publish a course? Click here

Origin of the butterfly magnetoresistance in ZrSiS

83   0   0.0 ( 0 )
 Added by Jorrit De Boer
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

ZrSiS has been identified as a topological material made from non-toxic and earth-abundant elements. Together with its extremely large and uniquely angle-dependent magnetoresistance this makes it an interesting material for applications. We study the origin of the so-called butterfly magnetoresistance by performing magnetotransport measurements on four different devices made from exfoliated crystalline flakes. We identify near-perfect electron-hole compensation, tuned by the Zeeman effect, as the source of the butterfly magnetoresistance. Furthermore, the observed Shubnikov-de Haas oscillations are carefully analyzed using the Lifshitz-Kosevich equation to determine their Berry phase and thus their topological properties. Although the link between the butterfly magnetoresistance and the Berry phase remains uncertain, the topological nature of ZrSiS is confirmed.



rate research

Read More

We report a study on the magnetotransport properties and on the Fermi surfaces (FS) of the ZrSi(Se,Te) semimetals. Density Functional Theory (DFT) calculations, in absence of spin orbit coupling (SOC), reveal that both the Se and the Te compounds display Dirac nodal lines (DNL) close to the Fermi level $varepsilon_F$ at symmorphic and non-symmorphic positions, respectively. We find that the geometry of their FSs agrees well with DFT predictions. ZrSiSe displays low residual resistivities, pronounced magnetoresistivity, high carrier mobilities, and a butterfly-like angle-dependent magnetoresistivity (AMR), although its DNL is not protected against gap opening. As in Cd$_3$As$_2$, its transport lifetime is found to be 10$^2$ to 10$^3$ times larger than its quantum one. ZrSiTe, which possesses a protected DNL, displays conventional transport properties. Our evaluation indicates that both compounds most likely are topologically trivial. Nearly angle-independent effective masses with strong angle dependent quantum lifetimes lead to the butterfly AMR in ZrSiSe.
Spintronic devices using antiferromagnets (AFMs) are promising candidates for future applications. Recently, many interesting physical properties have been reported with AFM-based devices. Here we report a butterfly-shaped magnetoresistance (MR) in a micrometer-sized triangular-lattice antiferromagnet Ag$_2$CrO$_2$. The material consists of two-dimensional triangular-lattice CrO$_2$ layers with antiferromagnetically coupled $S$ = 3/2 spins and Ag$_2$ layers with high electrical conductivity. The butterfly-shaped MR appears only when the magnetic field is applied perpendicularly to the CrO$_2$ plane with the maximum MR ratio ($approx$ 15%) at the magnetic ordering temperature. These features are distinct from those observed in conventional magnetic materials. We propose a theoretical model where fluctuations of partially disordered spins with the Ising anisotropy play an essential role in the butterfly-shaped MR in Ag$_2$CrO$_2$.
We investigate theoretically the spectrum of a graphene-like sample (honeycomb lattice) subjected to a perpendicular magnetic field and irradiated by circularly polarized light. This system is studied using the Floquet formalism, and the resulting Hofstadter spectrum is analyzed for different regimes of the driving frequency. For lower frequencies, resonances of various copies of the spectrum lead to intricate formations of topological gaps. In the Landau-level regime, new wing-like gaps emerge upon reducing the driving frequency, thus revealing the possibility of dynamically tuning the formation of the Hofstadter butterfly. In this regime, an effective model may be analytically derived, which allows us to retrace the energy levels that exhibit avoided crossings and ultimately lead to gap structures with a wing-like shape. At high frequencies, we find that gaps open for various fluxes at $E=0$, and upon increasing the amplitude of the driving, gaps also close and reopen at other energies. The topological invariants of these gaps are calculated and the resulting spectrum is elucidated. We suggest opportunities for experimental realization and discuss similarities with Landau-level structures in non-driven systems.
We instigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. This material has recently revealed an intriguing butterfly-shaped in-plane AMR that is not well understood. Our measurements of the polar out-of-plane AMR show a surprisingly different response with a pronounced cusp-like feature. The maximum of the cusp-like anisotropy is reached when the magnetic field is oriented in the $a$-$b$ plane. Moreover, the AMR for the azimuthal out-of-plane current direction exhibits a very strong four-fold $a$-$b$ plane anisotropy. Combining the Fermi surfaces calculated from first principles with the Boltzmanns semiclassical transport theory we reproduce and explain all the prominent features of the unusual behavior of the in-plane and out-of-plane AMR. We are also able to clarify the origin of the strong non-saturating transverse magnetoresistance as an effect of imperfect charge-carrier compensation and open orbits. Finally, by combining our theoretical model and experimental data we estimate the average relaxation time of $2.6times10^{-14}$~s and the mean free path of $15$~nm at 1.8~K in our samples of ZrSiS.
We present a far-infrared magneto-optical study of the gapped nodal-line semimetal ZrSiS in magnetic fields $B$ up to 7 T. The observed field-dependent features, which represent intra- (cyclotron resonance) and interband transitions, develop as $sqrt{B}$ in increasing field and can be consistently explained within a simple 2D Dirac band model with a gap of 26 meV and an averaged Fermi velocity of $3times10^{5}$ m/s. This indicates a rather narrow distribution of these parameters along the in-plane portions of the nodal line in the Brillouin zone. A field-induced feature with an energy position that does not depend on $B$ is also detected in the spectra. Possible origins of this feature are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا