Do you want to publish a course? Click here

Ferromagnetic phase transition in topological crystalline insulator thin films: interplay of anomalous Hall angle and magnetic anisotropy

162   0   0.0 ( 0 )
 Added by Rajdeep Adhikari
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In magnetic topological phases of matter, the quantum anomalous Hall (QAH) effect is an emergent phenomenon driven by ferromagnetic doping, magnetic proximity effects and strain engineering. The realization of QAH states with multiple dissipationless edge and surface conduction channels defined by a Chern number $mathcal{C}geq1$ was foreseen for the ferromagnetically ordered SnTe class of topological crystalline insulators (TCIs). From magnetotransport measurements on Sn$_{1-x}$Mn$_{x}$Te ($0.00leq{x}leq{0.08}$)(111) epitaxial thin films grown by molecular beam epitaxy on BaF$_{2}$ substrates, hole mediated ferromagnetism is observed in samples with $xgeq0.06$ and the highest $T_mathrm{c}sim7.5,mathrm{K}$ is inferred from an anomalous Hall behavior in Sn$_{0.92}$Mn$_{0.08}$Te. The sizable anomalous Hall angle $sim$0.3 obtained for Sn$_{0.92}$Mn$_{0.08}$Te is one of the greatest reported for magnetic topological materials. The ferromagnetic ordering with perpendicular magnetic anisotropy, complemented by the inception of anomalous Hall effect in the Sn$_{1-x}$Mn$_{x}$Te layers for a thickness commensurate with the decay length of the top and bottom surface states, points at Sn$_{1-x}$Mn$_{x}$Te as a preferential platform for the realization of QAH states in ferromagnetic TCIs.



rate research

Read More

301 - Yuchen Ji , Zheng Liu , Peng Zhang 2021
The quantized version of anomalous Hall effect realized in magnetic topological insulators (MTIs) has great potential for the development of topological quantum physics and low-power electronic/spintronic applications. To enable dissipationless chiral edge conduction at zero magnetic field, effective exchange field arisen from the aligned magnetic dopants needs to be large enough to yield specific spin sub-band configurations. Here we report the thickness-tailored quantum anomalous Hall (QAH) effect in Cr-doped (Bi,Sb)2Te3 thin films by tuning the system across the two-dimensional (2D) limit. In addition to the Chern number-related metal-to-insulator QAH phase transition, we also demonstrate that the induced hybridization gap plays an indispensable role in determining the ground magnetic state of the MTIs, namely the spontaneous magnetization owning to considerable Van Vleck spin susceptibility guarantees the zero-field QAH state with unitary scaling law in thick samples, while the quantization of the Hall conductance can only be achieved with the assistance of external magnetic fields in ultra-thin films. The modulation of topology and magnetism through structural engineering may provide a useful guidance for the pursuit of QAH-based new phase diagrams and functionalities.
127 - Jue Jiang , Di Xiao , Fei Wang 2019
The quantum anomalous Hall (QAH) effect is a quintessential consequence of non-zero Berry curvature in momentum-space. The QAH insulator harbors dissipation-free chiral edge states in the absence of an external magnetic field. On the other hand, the topological Hall (TH) effect, a transport hallmark of the chiral spin textures, is a consequence of real-space Berry curvature. While both the QAH and TH effects have been reported separately, their coexistence, a manifestation of entangled chiral edge states and chiral spin textures, has not been reported. Here, by inserting a TI layer between two magnetic TI layers to form a sandwich heterostructure, we realized a concurrence of the TH effect and the QAH effect through electric field gating. The TH effect is probed by bulk carriers, while the QAH effect is characterized by chiral edge states. The appearance of TH effect in the QAH insulating regime is the consequence of chiral magnetic domain walls that result from the gate-induced Dzyaloshinskii-Moriya interaction and occur during the magnetization reversal process in the magnetic TI sandwich samples. The coexistence of chiral edge states and chiral spin textures potentially provides a unique platform for proof-of-concept dissipationless spin-textured spintronic applications.
The quantum anomalous Hall (QAH) state is a two-dimensional bulk insulator with a non-zero Chern number in absence of external magnetic fields. Protected gapless chiral edge states enable dissipationless current transport in electronic devices. Doping topological insulators with random magnetic impurities could realize the QAH state, but magnetic order is difficult to establish experimentally in the bulk insulating limit. Here we predict that the single quintuple layer of GdBiTe3 film could be a stoichiometric QAH insulator based on ab-initio calculations, which explicitly demonstrate ferromagnetic order and chiral edge states inside the bulk gap. We further investigate the topological quantum phase transition by tuning the lattice constant and interactions. A simple low-energy effective model is presented to capture the salient physical feature of this topological material.
The large curvature effects on micromagnetic energy of a thin ferromagnetic film with nonlocal dipolar energy are considered. We predict that the dipolar interaction and surface curvature can produce perpendicular anisotropy which can be controlled by engineering a special type of periodic surface shape structure. Similar effects can be achieved by a significant surface roughness in the film. We show that in general the anisotropy can point in an arbitrary direction depending on the surface curvature. We provide simple examples of these periodic surface structures to demonstrate how to engineer particular anisotropies in the film.
100 - Peng Chen , Yong Zhang , Qi Yao 2019
Engineering the anomalous Hall effect (AHE) in the emerging magnetic topological insulators (MTIs) has great potentials for quantum information processing and spintronics applications. In this letter, we synthesize the epitaxial Bi2Te3/MnTe magnetic heterostructures and observe pronounced AHE signals from both layers combined together. The evolution of the resulting hybrid AHE intensity with the top Bi2Te3 layer thickness manifests the presence of an intrinsic ferromagnetic phase induced by the topological surface states at the heterolayer-interface. More importantly, by doping the Bi2Te3 layer with Sb, we are able to manipulate the sign of the Berry phase-associated AHE component. Our results demonstrate the un-paralleled advantages of MTI heterostructures over magnetically doped TI counterparts, in which the tunability of the AHE response can be greatly enhanced. This in turn unveils a new avenue for MTI heterostructure-based multifunctional applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا