No Arabic abstract
Signatures of the Kondo effect in the electrical conductance of strongly correlated quantum dots are well understood both experimentally and theoretically, while those in the thermopower have been the subject of recent interest. Here, we extend theoretical work [T. A. Costi, Phys. Rev. B {bf 100}, 161106(R) (2019)] on the field-dependent thermopower of such systems, and carry out calculations in order to address a recent experiment on the field dependent thermoelectric response of Kondo-correlated quantum dots [A. Svilans {em et al.,} Phys. Rev. Lett. {bf 121}, 206801 (2018)]. In addition to the sign changes in the thermopower at temperatures $T_1(B)$ and $T_2(B)$ (present also for $B=0$) in the Kondo regime, an additional sign change was found [T. A. Costi, Phys. Rev. B {bf 100}, 161106(R) (2019)] at a temperature $T_0(B)<T_1(B)<T_2(B)$ for fields exceeding a gate-voltage dependent value $B_0$, where $B_0$ is comparable to, but larger, than the field $B_c$ at which the Kondo resonance splits. We describe the evolution of the Kondo-induced sign changes in the thermopower at temperatures $T_0(B),T_1(B)$ and $T_2(B)$ with magnetic field and gate voltage from the Kondo regime to the mixed valence and empty orbital regimes. By carrying out detailed NRG calculations for the above quantities we address the recent experiment by A. Svilans {em et al.,} Phys. Rev. Lett. {bf 121}, 206801 (2018), which measures the field-dependent thermoelectric response of InAs quantum dots exhibiting the Kondo effect, finding good agreement for the overall trends in the measured field- and temperature-dependent thermoelectric response as a function of gate voltage.
Recent experiments have measured the signatures of the Kondo effect in the zero-field thermopower of strongly correlated quantum dots [Svilans {em et al.,} Phys. Rev. Lett. {bf 121}, 206801 (2018); Dutta {em et al.,} Nano Lett. {bf 19}, 506 (2019)]. They confirm the predicted Kondo-induced sign change in the thermopower, upon increasing the temperature through a gate-voltage dependent value $T_{1}gtrsim T_{rm K}$, where $T_{rm K}$ is the Kondo temperature. Here, we use the numerical renormalization group (NRG) method to investigate the effect of a finite magnetic field $B$ on the thermopower of such quantum dots. We show that, for fields $B$ exceeding a gate-voltage dependent value $B_{0}$, an additional sign change takes place in the Kondo regime at a temperature $T_{0}(Bgeq B_{0})>0$ with $T_0<T_1$. The field $B_{0}$ is comparable to, but larger than, the field $B_{c}$ at which the zero-temperature spectral function splits in a magnetic field. The validity of the NRG results for $B_{0}$ are checked by comparison with asymptotically exact higher-order Fermi-liquid calculations [Oguri {em et al.,} Phys. Rev. B {bf 97}, 035435 (2018)]. Our calculations clarify the field-dependent signatures of the Kondo effect in the thermopower of Kondo-correlated quantum dots and explain the recently measured trends in the $B$-field dependence of the thermoelectric response of such systems [Svilans {em et al.,} Phys. Rev. Lett. {bf 121}, 206801 (2018)].
By means of sequential and cotunneling spectroscopy, we study the tunnel couplings between metallic leads and individual levels in a carbon nanotube quantum dot. The levels are ordered in shells consisting of two doublets with strong- and weak-tunnel couplings, leading to gate-dependent level renormalization. By comparison to a one- and two-shell model, this is shown to be a consequence of disorder-induced valley mixing in the nanotube. Moreover, a parallel magnetic field is shown to reduce this mixing and thus suppress the effects of tunnel renormalization.
Using renormalized perturbation theory in the Coulomb repulsion, we derive an analytical expression for the leading term in the temperature dependence of the conductance through a quantum dot described by the impurity Anderson model, in terms of the renormalized parameters of the model. Taking these parameters from the literature, we compare the results with published ones calculated using the numerical renormalization group obtaining a very good agreement. The approach is superior to alternative perturbative treatments. We compare in particular to the results of a simple interpolative perturbation approach.
We study the possibility to observe the two channel Kondo physics in multiple quantum dot heterostructures in the presence of magnetic field. We show that a fine tuning of the coupling parameters of the system and an external magnetic field may stabilize the two channel Kondo critical point. We make predictions for behavior of the scaling of the differential conductance in the vicinity of the quantum critical point, as a function of magnetic field, temperature and source-drain potential.
The thermopower of a Kondo-correlated gate-defined quantum dot is studied using a current heating technique. In the presence of spin correlations the thermopower shows a clear deviation from the semiclassical Mott relation between thermopower and conductivity. The strong thermopower signal indicates a significant asymmetry in the spectral density of states of the Kondo resonance with respect to the Fermi energies of the reservoirs. The observed behavior can be explained within the framework of an Anderson-impurity model. Keywords: Thermoelectric and thermomagnetic effects, Coulomb blockade, single electron tunneling, Kondo-effect PACS Numbers: 72.20.Pa, 73.23.Hk