Do you want to publish a course? Click here

Cross-lingual Parsing with Polyglot Training and Multi-treebank Learning: A Faroese Case Study

177   0   0.0 ( 0 )
 Added by James Barry
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Cross-lingual dependency parsing involves transferring syntactic knowledge from one language to another. It is a crucial component for inducing dependency parsers in low-resource scenarios where no training data for a language exists. Using Faroese as the target language, we compare two approaches using annotation projection: first, projecting from multiple monolingual source models; second, projecting from a single polyglot model which is trained on the combination of all source languages. Furthermore, we reproduce multi-source projection (Tyers et al., 2018), in which dependency trees of multiple sources are combined. Finally, we apply multi-treebank modelling to the projected treebanks, in addition to or alternatively to polyglot modelling on the source side. We find that polyglot training on the source languages produces an overall trend of better results on the target language but the single best result for the target language is obtained by projecting from monolingual source parsing models and then training multi-treebank POS tagging and parsing models on the target side.



rate research

Read More

115 - Kailai Sun , Zuchao Li , Hai Zhao 2020
Syntactic parsing is a highly linguistic processing task whose parser requires training on treebanks from the expensive human annotation. As it is unlikely to obtain a treebank for every human language, in this work, we propose an effective cross-lingual UD parsing framework for transferring parser from only one source monolingual treebank to any other target languages without treebank available. To reach satisfactory parsing accuracy among quite different languages, we introduce two language modeling tasks into dependency parsing as multi-tasking. Assuming only unlabeled data from target languages plus the source treebank can be exploited together, we adopt a self-training strategy for further performance improvement in terms of our multi-task framework. Our proposed cross-lingual parsers are implemented for English, Chinese, and 22 UD treebanks. The empirical study shows that our cross-lingual parsers yield promising results for all target languages, for the first time, approaching the parser performance which is trained in its own target treebank.
223 - Yanyan Zou , Wei Lu 2018
With the development of several multilingual datasets used for semantic parsing, recent research efforts have looked into the problem of learning semantic parsers in a multilingual setup. However, how to improve the performance of a monolingual semantic parser for a specific language by leveraging data annotated in different languages remains a research question that is under-explored. In this work, we present a study to show how learning distributed representations of the logical forms from data annotated in different languages can be used for improving the performance of a monolingual semantic parser. We extend two existing monolingual semantic parsers to incorporate such cross-lingual distributed logical representations as features. Experiments show that our proposed approach is able to yield improved semantic parsing results on the standard multilingual GeoQuery dataset.
Cross-lingual Summarization (CLS) aims at producing a summary in the target language for an article in the source language. Traditional solutions employ a two-step approach, i.e. translate then summarize or summarize then translate. Recently, end-to-end models have achieved better results, but these approaches are mostly limited by their dependence on large-scale labeled data. We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks such as translation and monolingual tasks like masked language models. Thus, our model can leverage the massive monolingual data to enhance its modeling of language. Moreover, the architecture has no task-specific components, which saves memory and increases optimization efficiency. We show in experiments that this pre-training scheme can effectively boost the performance of cross-lingual summarization. In Neural Cross-Lingual Summarization (NCLS) dataset, our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
Learning multilingual representations of text has proven a successful method for many cross-lingual transfer learning tasks. There are two main paradigms for learning such representations: (1) alignment, which maps different independently trained monolingual representations into a shared space, and (2) joint training, which directly learns unified multilingual representations using monolingual and cross-lingual objectives jointly. In this paper, we first conduct direct comparisons of representations learned using both of these methods across diverse cross-lingual tasks. Our empirical results reveal a set of pros and cons for both methods, and show that the relative performance of alignment versus joint training is task-dependent. Stemming from this analysis, we propose a simple and novel framework that combines these two previously mutually-exclusive approaches. Extensive experiments demonstrate that our proposed framework alleviates limitations of both approaches, and outperforms existing methods on the MUSE bilingual lexicon induction (BLI) benchmark. We further show that this framework can generalize to contextualized representations such as Multilingual BERT, and produces state-of-the-art results on the CoNLL cross-lingual NER benchmark.
Generative adversarial networks (GANs) have succeeded in inducing cross-lingual word embeddings -- maps of matching words across languages -- without supervision. Despite these successes, GANs performance for the difficult case of distant languages is still not satisfactory. These limitations have been explained by GANs incorrect assumption that source and target embedding spaces are related by a single linear mapping and are approximately isomorphic. We assume instead that, especially across distant languages, the mapping is only piece-wise linear, and propose a multi-adversarial learning method. This novel method induces the seed cross-lingual dictionary through multiple mappings, each induced to fit the mapping for one subspace. Our experiments on unsupervised bilingual lexicon induction show that this method improves performance over previous single-mapping methods, especially for distant languages.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا