No Arabic abstract
Most efforts to incorporate computational thinking in K-12 education have been focused on students in their first cycles of school education and have used visual tools, such as Scratch and Alice. Fewer research projects have studied the development of computational thinking in students in their last years of school, who usually have not had early formal preparation to acquire these skills. This study provides evidence of the effectiveness of teaching programming in C++ (a low-level language) to develop computational thinking in high school students in Chile. By applying a test before and after a voluntary C ++ programming workshop, the results show a significant improvement in computational thinking at the end of the workshop. However, we also observed that there was a tendency to drop out of the workshop among students with lower levels of initial computational thinking. Tenth-grade students obtained lower final scores than eleventh and twelfth-grade students. These results indicate that teaching a low-level programming language is useful, but it has high entry-barriers.
To increase public awareness of theoretical materials physics, a small group of high school students is invited to participate actively in a current research projects at Chalmers University of Technology. The Chalmers research group explores methods for filtrating hazardous and otherwise unwanted molecules from drinking water, for example by adsorption in active carbon filters. In this project, the students use graphene as an idealized model for active carbon, and estimate the energy of adsorption of the methylbenzene toluene on graphene with the help of the atomic-scale calculational method density functional theory. In this process the students develop an insight into applied quantum physics, a topic usually not taught at this educational level, and gain some experience with a couple of state-of-the-art calculational tools in materials research.
Quantum computing is a growing field at the intersection of physics and computer science. The goal of this article is to highlight a successfully trialled quantum computing course for high school students between the ages of 15 and 18 years old. This course bridges the gap between popular science articles and advanced undergraduate textbooks. Conceptual ideas in the text are reinforced with active learning techniques, such as interactive problem sets and simulation-based labs at various levels. The course is freely available for use and download under the Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International license.
Technology is an extremely potent tool that can be leveraged for human development and social good. Owing to the great importance of environment and human psychology in driving human behavior, and the ubiquity of technology in modern life, there is a need to leverage the insights and capabilities of both fields together for nudging people towards a behavior that is optimal in some sense (personal or social). In this regard, the field of persuasive technology, which proposes to infuse technology with appropriate design and incentives using insights from psychology, behavioral economics, and human-computer interaction holds a lot of promise. Whilst persuasive technology is already being developed and is at play in many commercial applications, it can have the great social impact in the field of Information and Communication Technology for Development (ICTD) which uses Information and Communication Technology (ICT) for human developmental ends such as education and health. In this paper we will explore what persuasive technology is and how it can be used for the ends of human development. To develop the ideas in a concrete setting, we present a case study outlining how persuasive technology can be used for human development in Pakistan, a developing South Asian country, that suffers from many of the problems that plague typical developing country.
Computational Thinking (CT) is still a relatively new term in the lexicon of learning objectives and science standards. There is not yet widespread agreement on the precise definition or implementation of CT, and efforts to assess CT are still maturing, even as more states adopt K-12 computer science standards. In this article we will try to summarize what CT means for a typical introductory (i.e. high school or early college) physics class. This will include a discussion of the ways that instructors may already be incorporating elements of CT in their classes without knowing it. Our intention in writing this article is to provide a helpful, concise and readable introduction to this topic for physics instructors. We also put forward some ideas for what the future of CT in introductory physics may look like.
The current study uses a network analysis approach to explore the STEM pathways that students take through their final year of high school in Aotearoa New Zealand. By accessing individual-level microdata from New Zealands Integrated Data Infrastructure, we are able to create a co-enrolment network comprised of all STEM assessment standards taken by students in New Zealand between 2010 and 2016. We explore the structure of this co-enrolment network though use of community detection and a novel measure of entropy. We then investigate how network structure differs across sub-populations based on students sex, ethnicity, and the socio-economic-status (SES) of the high school they attended. Results show the structure of the STEM co-enrolment network differs across these sub-populations, and also changes over time. We find that, while female students were more likely to have been enrolled in life science standards, they were less well represented in physics, calculus, and vocational (e.g., agriculture, practical technology) standards. Our results also show that the enrolment patterns of the Maori and Pacific Islands sub-populations had higher levels of entropy, an observation that may be explained by fewer enrolments in key science and mathematics standards. Through further investigation of this disparity, we find that ethnic group differences in entropy are moderated by high school SES, such that the difference in entropy between Maori and Pacific Islands students, and European and Asian students is even greater. We discuss these findings in the context of the New Zealand education system and policy changes that occurred between 2010 and 2016.