Do you want to publish a course? Click here

The roles of latent heating and dust in the structure and variability of the northern Martian polar vortex

121   0   0.0 ( 0 )
 Added by Emily Ball
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The winter polar vortices on Mars are annular in terms of their potential vorticity (PV) structure, a phenomenon identified in observations, reanalysis and some numerical simulations. Some recent modeling studies have proposed that condensation of atmospheric carbon dioxide at the winter pole is a contributing factor to maintaining the annulus through the release of latent heat. Dust and topographic forcing are also known to be causes of internal and interannual variability in the polar vortices. However, coupling between these factors remains uncertain, and previous studies of their impact on vortex structure and variability have been largely limited to a single Martian global climate model (MGCM). Here, by further developing a novel MGCM, we decompose the relative roles of latent heat and dust as drivers for the variability and structure of the northern Martian polar vortex. We also consider how Martian topography modifies the driving response. By also analyzing a reanalysis dataset we show that there is significant dependence in the polar vortex structure and variability on the observations assimilated. In both model and reanalysis, high atmospheric dust loading (such as that seen during a global dust storm) can disrupt the vortex, cause the destruction of PV in the low-mid altitudes (> 0.1 hPa), and significantly reduce spatial and temporal vortex variability. Through our simulations, we find that the combination of dust and topography primarily drives the eddy activity throughout the Martian year, and that although latent heat release can produce an annular vortex, it has a relatively minor effect on vortex variability.



rate research

Read More

We study roles of the thermosphere and exosphere on the Martian ionospheric structure and ion escape rates in the process of the solar wind-Mars interaction. We employ a four-species multifluid MHD (MF-MHD) model to simulate the Martian ionosphere and magnetosphere. The $cold$ thermosphere background is taken from the Mars Global Ionosphere Thermosphere Model (M-GITM) and the $hot$ oxygen exosphere is adopted from the Mars exosphere Monte Carlo model - Adaptive Mesh Particle Simulator (AMPS). A total of four cases with the combination of 1D (globally averaged) and 3D thermospheres and exospheres are studied. The ion escape rates calculated by adopting 1D and 3D atmospheres are similar; however, the latter are required to adequately reproduce MAVEN ionospheric observations. In addition, our simulations show that the 3D hot oxygen corona plays an important role in preventing planetary molecular ions (O$_2^+$ and CO$_2^+$) escaping from Mars, mainly resulting from the mass loading of the high-altitude exospheric O$^+$ ions. The $cold$ thermospheric oxygen atom, however, is demonstrated to be the primary neutral source for O$^+$ ion escape during the relatively weak solar cycle 24.
Saturns polar stratosphere exhibits the seasonal growth and dissipation of broad, warm, vortices poleward of $sim75^circ$ latitude, which are strongest in the summer and absent in winter. The longevity of the exploration of the Saturn system by Cassini allows the use of infrared spectroscopy to trace the formation of the North Polar Stratospheric Vortex (NPSV), a region of enhanced temperatures and elevated hydrocarbon abundances at millibar pressures. We constrain the timescales of stratospheric vortex formation and dissipation in both hemispheres. Although the NPSV formed during late northern spring, by the end of Cassinis reconnaissance (shortly after northern summer solstice), it still did not display the contrasts in temperature and composition that were evident at the south pole during southern summer. The newly-formed NPSV was bounded by a strengthening stratospheric thermal gradient near $78^circ$N. The emergent boundary was hexagonal, suggesting that the Rossby wave responsible for Saturns long-lived polar hexagon - which was previously expected to be trapped in the troposphere - can influence the stratospheric temperatures some 300 km above Saturns clouds.
Recently, Nadir and Occultation for Mars Discovery (NOMAD) ultraviolet and visible spectrometer instrument on board the European Space Agencys ExoMars Trace Gas Orbiter (TGO) simultaneously measured the limb emission intensities for both [OI] 2972 and 5577 {AA} (green) emissions in the dayside of Martian upper atmosphere. We aim to explore the photochemistry of all these forbidden atomic oxygen emissions ([OI] 2972, 5577, 6300, 6464 {AA}) in the Martian daylight upper atmosphere and suitable conditions for the simultaneous detection of these emissions lines in the dayside visible spectra. A photochemical model is developed to study the production and loss processes of O(1S) and O(1D) by incorporating various chemical reactions of different O-bearing species in the upper atmosphere of Mars. By reducing Fox (2004) modelled neutral density profiles by a factor of 2, the calculated limb intensity profiles for [OI] 5577 and 2972 {AA} emissions are found to be consistent with the NOMAD-TGO observations. In this case, at altitudes below 120 km, our modelled limb intensity for [OI] 6300 {AA} emission is smaller by a factor 2 to 5 compared to that of NOMAD-TGO observation for [OI] 2972 {AA} emission, and above this distance it is comparable with the upper limit of the observation. We studied various parameters which can influence the limb intensities of these atomic oxygen forbidden emission lines. Our calculated limb intensity for [OI] 6300 {AA} emission, when the Mars is at near perihelion and for solar maximum condition, suggests that all these forbidden emissions should be observable in the NOMAD-TGO visible spectra taken on the dayside of Martian upper atmosphere. More simultaneous observations of forbidden atomic oxygen emission lines will help to understand the photochemical processes of oxygen-bearing species in the dayside Martian upper atmosphere.
Mars polar layered deposits (PLD) are comprised of layers of varying dust-to-water ice volume mixing ratios (VMR) that may record astronomically-forced climatic variation over Mars recent orbital history. Retracing the formation of these layers by quantifying the sensitivity of deposition rates of polar material to astronomical forcing is critical for the interpretation of this record. Using a Mars global climate model (GCM), we investigate the sensitivity of annual polar water ice and dust surface deposition to various obliquities and surface water ice distributions at zero eccentricity, providing a reasonable characterization of the evolution of the PLD during recent low-eccentricity epochs. For obliquities between 15{deg} - 35{deg}, predicted net annual accumulation rates range from -1 to +14 mm/yr for water ice and from +0.003 to +0.3 mm/yr for dust. GCM-derived rates are ingested into an integration model that simulates polar accumulation of water ice and dust over 5 consecutive obliquity cycles (~700 kyrs) during a low eccentricity epoch. A subset of integration simulations predict combined accumulation of water ice and dust in the north at time averaged rates that are near the observationally-inferred value of 0.5 mm/yr. Three types of layers are produced per obliquity cycle: a ~30 m-thick dust-rich (~25% dust VMR) layer forms at high obliquity, a ~0.5 m-thick dust lag forms at low obliquity, and two ~10 m-thick dust-poor (~3%) layers form when obliquity is increasing/decreasing. The ~30 m-thick dust-rich layer is reminiscent of a ~30 m feature derived from visible imagery analysis the north PLD, while the ~0.5 m-thick dust lag is a factor of ~2 smaller than observed thin layers. Overall, this investigation provides further evidence for obliquity forcing in the PLD climate record, and demonstrates the importance of ice-on-dust nucleation in polar depositional processes.
We study the 2018 Martian Global DustStorm (GDS 2018) over the Southern Polar Region using images obtained by the Visual Monitoring Camera (VMC) on board Mars Express during June and July 2018. Dust penetrated into the polar cap region but never covered the cap completely, and its spatial distribution was nonhomogeneous and rapidly changing. However, we detected long but narrow aerosol curved arcs with a length of 2,000-3,000 km traversing part of the cap and crossing the terminator into the night side. Tracking discrete dust clouds allowed measurements of their motions that were towards the terminator with velocities up to 100 m/s. The images of the dust projected into the Martian limb show maximum altitudes of around 70 km but with large spatial and temporal variations. We discuss these results in the context of the predictions of a numerical model for dust storm scenario.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا