Do you want to publish a course? Click here

Attention-based Fault-tolerant Approach for Multi-agent Reinforcement Learning Systems

71   0   0.0 ( 0 )
 Added by Mingyang Geng
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The aim of multi-agent reinforcement learning systems is to provide interacting agents with the ability to collaboratively learn and adapt to the behavior of other agents. In many real-world applications, the agents can only acquire a partial view of the world. However, in realistic settings, one or more agents that show arbitrarily faulty or malicious behavior may suffice to let the current coordination mechanisms fail. In this paper, we study a practical scenario considering the security issues in the presence of agents with arbitrarily faulty or malicious behavior. Under these circumstances, learning an optimal policy becomes particularly challenging, even in the unrealistic case that an agents policy can be made conditional upon all other agents observations. To overcome these difficulties, we present an Attention-based Fault-Tolerant (FT-Attn) algorithm which selects correct and relevant information for each agent at every time-step. The multi-head attention mechanism enables the agents to learn effective communication policies through experience concurrently to the action policies. Empirical results have shown that FT-Attn beats previous state-of-the-art methods in some complex environments and can adapt to various kinds of noisy environments without tuning the complexity of the algorithm. Furthermore, FT-Attn can effectively deal with the complex situation where an agent needs to reach multiple agents correct observation at the same time.



rate research

Read More

154 - Shariq Iqbal , Fei Sha 2018
Reinforcement learning in multi-agent scenarios is important for real-world applications but presents challenges beyond those seen in single-agent settings. We present an actor-critic algorithm that trains decentralized policies in multi-agent settings, using centrally computed critics that share an attention mechanism which selects relevant information for each agent at every timestep. This attention mechanism enables more effective and scalable learning in complex multi-agent environments, when compared to recent approaches. Our approach is applicable not only to cooperative settings with shared rewards, but also individualized reward settings, including adversarial settings, as well as settings that do not provide global states, and it makes no assumptions about the action spaces of the agents. As such, it is flexible enough to be applied to most multi-agent learning problems.
Learning from datasets without interaction with environments (Offline Learning) is an essential step to apply Reinforcement Learning (RL) algorithms in real-world scenarios. However, compared with the single-agent counterpart, offline multi-agent RL introduces more agents with the larger state and action space, which is more challenging but attracts little attention. We demonstrate current offline RL algorithms are ineffective in multi-agent systems due to the accumulated extrapolation error. In this paper, we propose a novel offline RL algorithm, named Implicit Constraint Q-learning (ICQ), which effectively alleviates the extrapolation error by only trusting the state-action pairs given in the dataset for value estimation. Moreover, we extend ICQ to multi-agent tasks by decomposing the joint-policy under the implicit constraint. Experimental results demonstrate that the extrapolation error is reduced to almost zero and insensitive to the number of agents. We further show that ICQ achieves the state-of-the-art performance in the challenging multi-agent offline tasks (StarCraft II).
Exploration is critical for good results in deep reinforcement learning and has attracted much attention. However, existing multi-agent deep reinforcement learning algorithms still use mostly noise-based techniques. Very recently, exploration methods that consider cooperation among multiple agents have been developed. However, existing methods suffer from a common challenge: agents struggle to identify states that are worth exploring, and hardly coordinate exploration efforts toward those states. To address this shortcoming, in this paper, we propose cooperative multi-agent exploration (CMAE): agents share a common goal while exploring. The goal is selected from multiple projected state spaces via a normalized entropy-based technique. Then, agents are trained to reach this goal in a coordinated manner. We demonstrate that CMAE consistently outperforms baselines on various tasks, including a sparse-reward version of the multiple-particle environment (MPE) and the Starcraft multi-agent challenge (SMAC).
Centralized Training with Decentralized Execution (CTDE) has been a popular paradigm in cooperative Multi-Agent Reinforcement Learning (MARL) settings and is widely used in many real applications. One of the major challenges in the training process is credit assignment, which aims to deduce the contributions of each agent according to the global rewards. Existing credit assignment methods focus on either decomposing the joint value function into individual value functions or measuring the impact of local observations and actions on the global value function. These approaches lack a thorough consideration of the complicated interactions among multiple agents, leading to an unsuitable assignment of credit and subsequently mediocre results on MARL. We propose Shapley Counterfactual Credit Assignment, a novel method for explicit credit assignment which accounts for the coalition of agents. Specifically, Shapley Value and its desired properties are leveraged in deep MARL to credit any combinations of agents, which grants us the capability to estimate the individual credit for each agent. Despite this capability, the main technical difficulty lies in the computational complexity of Shapley Value who grows factorially as the number of agents. We instead utilize an approximation method via Monte Carlo sampling, which reduces the sample complexity while maintaining its effectiveness. We evaluate our method on StarCraft II benchmarks across different scenarios. Our method outperforms existing cooperative MARL algorithms significantly and achieves the state-of-the-art, with especially large margins on tasks with more severe difficulties.
Joint attention - the ability to purposefully coordinate attention with another agent, and mutually attend to the same thing -- is a critical component of human social cognition. In this paper, we ask whether joint attention can be useful as a mechanism for improving multi-agent coordination and social learning. We first develop deep reinforcement learning (RL) agents with a recurrent visual attention architecture. We then train agents to minimize the difference between the attention weights that they apply to the environment at each timestep, and the attention of other agents. Our results show that this joint attention incentive improves agents ability to solve difficult coordination tasks, by reducing the exponential cost of exploring the joint multi-agent action space. Joint attention leads to higher performance than a competitive centralized critic baseline across multiple environments. Further, we show that joint attention enhances agents ability to learn from experts present in their environment, even when completing hard exploration tasks that do not require coordination. Taken together, these findings suggest that joint attention may be a useful inductive bias for multi-agent learning.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا