Do you want to publish a course? Click here

Spike-based causal inference for weight alignment

96   0   0.0 ( 0 )
 Added by Jordan Guerguiev
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In artificial neural networks trained with gradient descent, the weights used for processing stimuli are also used during backward passes to calculate gradients. For the real brain to approximate gradients, gradient information would have to be propagated separately, such that one set of synaptic weights is used for processing and another set is used for backward passes. This produces the so-called weight transport problem for biological models of learning, where the backward weights used to calculate gradients need to mirror the forward weights used to process stimuli. This weight transport problem has been considered so hard that popular proposals for biological learning assume that the backward weights are simply random, as in the feedback alignment algorithm. However, such random weights do not appear to work well for large networks. Here we show how the discontinuity introduced in a spiking system can lead to a solution to this problem. The resulting algorithm is a special case of an estimator used for causal inference in econometrics, regression discontinuity design. We show empirically that this algorithm rapidly makes the backward weights approximate the forward weights. As the backward weights become correct, this improves learning performance over feedback alignment on tasks such as Fashion-MNIST, SVHN, CIFAR-10 and VOC. Our results demonstrate that a simple learning rule in a spiking network can allow neurons to produce the right backward connections and thus solve the weight transport problem.



rate research

Read More

The ultimate goal of cognitive neuroscience is to understand the mechanistic neural processes underlying the functional organization of the brain. Key to this study is understanding structure of both the structural and functional connectivity between anatomical regions. In this paper we follow previous work in developing a simple dynamical model of the brain by simulating its various regions as Kuramoto oscillators whose coupling structure is described by a complex network. However in our simulations rather than generating synthetic networks, we simulate our synthetic model but coupled by a real network of the anatomical brain regions which has been reconstructed from diffusion tensor imaging (DTI) data. By using an information theoretic approach that defines direct information flow in terms of causation entropy (CSE), we show that we can more accurately recover the true structural network than either of the popular correlation or LASSO regression techniques. We demonstrate the effectiveness of our method when applied to data simulated on the realistic DTI network, as well as on randomly generated small-world and Erdos-Renyi (ER) networks.
The metrization of the space of neural responses is an ongoing research program seeking to find natural ways to describe, in geometrical terms, the sets of possible activities in the brain. One component of this program are the {em spike metrics}, notions of distance between two spike trains recorded from a neuron. Alignment spike metrics work by identifying equivalent spikes in one train and the other. We present an alignment spike metric having $mathcal{L}_p$ underlying geometrical structure; the $mathcal{L}_2$ version is Euclidean and is suitable for further embedding in Euclidean spaces by Multidimensional Scaling methods or related procedures. We show how to implement a fast algorithm for the computation of this metric based on bipartite graph matching theory.
Developing electrophysiological recordings of brain neuronal activity and their analysis provide a basis for exploring the structure of brain function and nervous system investigation. The recorded signals are typically a combination of spikes and noise. High amounts of background noise and possibility of electric signaling recording from several neurons adjacent to the recording site have led scientists to develop neuronal signal processing tools such as spike sorting to facilitate brain data analysis. Spike sorting plays a pivotal role in understanding the electrophysiological activity of neuronal networks. This process prepares recorded data for interpretations of neurons interactions and understanding the overall structure of brain functions. Spike sorting consists of three steps: spike detection, feature extraction, and spike clustering. There are several methods to implement each of spike sorting steps. This paper provides a systematic comparison of various spike sorting sub-techniques applied to real extracellularly recorded data from a rat brain basolateral amygdala. An efficient sorted data resulted from careful choice of spike sorting sub-methods leads to better interpretation of the brain structures connectivity under different conditions, which is a very sensitive concept in diagnosis and treatment of neurological disorders. Here, spike detection is performed by appropriate choice of threshold level via three different approaches. Feature extraction is done through PCA and Kernel PCA methods, which Kernel PCA outperforms. We have applied four different algorithms for spike clustering including K-means, Fuzzy C-means, Bayesian and Fuzzy maximum likelihood estimation. As one requirement of most clustering algorithms, optimal number of clusters is achieved through validity indices for each method. Finally, the sorting results are evaluated using inter-spike interval histograms.
Our mysterious brain is believed to operate near a non-equilibrium point and generate critical self-organized avalanches in neuronal activity. Recent experimental evidence has revealed significant heterogeneity in both synaptic input and output connectivity, but whether the structural heterogeneity participates in the regulation of neuronal avalanches remains poorly understood. By computational modelling, we predict that different types of structural heterogeneity contribute distinct effects on avalanche neurodynamics. In particular, neuronal avalanches can be triggered at an intermediate level of input heterogeneity, but heterogeneous output connectivity cannot evoke avalanche dynamics. In the criticality region, the co-emergence of multi-scale cortical activities is observed, and both the avalanche dynamics and neuronal oscillations are modulated by the input heterogeneity. Remarkably, we show similar results can be reproduced in networks with various types of in- and out-degree distributions. Overall, these findings not only provide details on the underlying circuitry mechanisms of nonrandom synaptic connectivity in the regulation of neuronal avalanches, but also inspire testable hypotheses for future experimental studies.
Winner-Take-All (WTA) refers to the neural operation that selects a (typically small) group of neurons from a large neuron pool. It is conjectured to underlie many of the brains fundamental computational abilities. However, not much is known about the robustness of a spike-based WTA network to the inherent randomness of the input spike trains. In this work, we consider a spike-based $k$--WTA model wherein $n$ randomly generated input spike trains compete with each other based on their underlying statistics, and $k$ winners are supposed to be selected. We slot the time evenly with each time slot of length $1, ms$, and model the $n$ input spike trains as $n$ independent Bernoulli processes. The Bernoulli process is a good approximation of the popular Poisson process but is more biologically relevant as it takes the refractory periods into account. Due to the randomness in the input spike trains, no circuits can guarantee to successfully select the correct winners in finite time. We focus on analytically characterizing the minimal amount of time needed so that a target minimax decision accuracy (success probability) can be reached. We first derive an information-theoretic lower bound on the decision time. We show that to have a (minimax) decision error $le delta$ (where $delta in (0,1)$), the computation time of any WTA circuit is at least [ ((1-delta) log(k(n -k)+1) -1)T_{mathcal{R}}, ] where $T_{mathcal{R}}$ is a difficulty parameter of a WTA task that is independent of $delta$, $n$, and $k$. We then design a simple WTA circuit whose decision time is [ O( logfrac{1}{delta}+log k(n-k))T_{mathcal{R}}). ] It turns out that for any fixed $delta in (0,1)$, this decision time is order-optimal in terms of its scaling in $n$, $k$, and $T_{mathcal{R}}$.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا