No Arabic abstract
Developing electrophysiological recordings of brain neuronal activity and their analysis provide a basis for exploring the structure of brain function and nervous system investigation. The recorded signals are typically a combination of spikes and noise. High amounts of background noise and possibility of electric signaling recording from several neurons adjacent to the recording site have led scientists to develop neuronal signal processing tools such as spike sorting to facilitate brain data analysis. Spike sorting plays a pivotal role in understanding the electrophysiological activity of neuronal networks. This process prepares recorded data for interpretations of neurons interactions and understanding the overall structure of brain functions. Spike sorting consists of three steps: spike detection, feature extraction, and spike clustering. There are several methods to implement each of spike sorting steps. This paper provides a systematic comparison of various spike sorting sub-techniques applied to real extracellularly recorded data from a rat brain basolateral amygdala. An efficient sorted data resulted from careful choice of spike sorting sub-methods leads to better interpretation of the brain structures connectivity under different conditions, which is a very sensitive concept in diagnosis and treatment of neurological disorders. Here, spike detection is performed by appropriate choice of threshold level via three different approaches. Feature extraction is done through PCA and Kernel PCA methods, which Kernel PCA outperforms. We have applied four different algorithms for spike clustering including K-means, Fuzzy C-means, Bayesian and Fuzzy maximum likelihood estimation. As one requirement of most clustering algorithms, optimal number of clusters is achieved through validity indices for each method. Finally, the sorting results are evaluated using inter-spike interval histograms.
fMRI is a unique non-invasive approach for understanding the functional organization of the human brain, and task-based fMRI promotes identification of functionally relevant brain regions associated with a given task. Here, we use fMRI (using the Poffenberger Paradigm) data collected in mono- and dizygotic twin pairs to propose a novel approach for assessing similarity in functional networks. In particular, we compared network similarity between pairs of twins in task-relevant and task-orthogonal networks. The proposed method measures the similarity between functional networks using a geodesic distance between graph Laplacians. With method we show that networks are more similar in monozygotic twins compared to dizygotic twins. Furthermore, the similarity in monozygotic twins is higher for task-relevant, than task-orthogonal networks.
Our mysterious brain is believed to operate near a non-equilibrium point and generate critical self-organized avalanches in neuronal activity. Recent experimental evidence has revealed significant heterogeneity in both synaptic input and output connectivity, but whether the structural heterogeneity participates in the regulation of neuronal avalanches remains poorly understood. By computational modelling, we predict that different types of structural heterogeneity contribute distinct effects on avalanche neurodynamics. In particular, neuronal avalanches can be triggered at an intermediate level of input heterogeneity, but heterogeneous output connectivity cannot evoke avalanche dynamics. In the criticality region, the co-emergence of multi-scale cortical activities is observed, and both the avalanche dynamics and neuronal oscillations are modulated by the input heterogeneity. Remarkably, we show similar results can be reproduced in networks with various types of in- and out-degree distributions. Overall, these findings not only provide details on the underlying circuitry mechanisms of nonrandom synaptic connectivity in the regulation of neuronal avalanches, but also inspire testable hypotheses for future experimental studies.
Introduction- Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. The Izhikevich model is one of the simplest biologically plausible models, i.e. capable of capturing the most recognized firing patterns of neurons. This property makes the model efficient in simulating the large-scale networks of neurons. Improving the Izhikevich model for adapting to the neuronal activity of the rat brain with great accuracy would make the model effective for future neural network implementations. Methods- Data sampling from two brain regions, the HIP and BLA, was performed by the extracellular recordings of male rats, and spike sorting was conducted by Plexon offline sorter. Further analyses were performed through NeuroExplorer and MATLAB. To optimize the Izhikevich model parameters, a genetic algorithm was used. The process of comparison in each iteration leads to the survival of better populations until achieving the optimum solution. Results- In the present study, the possible firing patterns of the real single neurons of the HIP and BLA were identified. Additionally, an improved Izhikevich model was achieved. Accordingly, the real neuronal spiking pattern of these regions neurons and the corresponding cases of the Izhikevich neuron spiking pattern were adjusted with great accuracy. Conclusion- This study was conducted to elevate our knowledge of neural interactions in different structures of the brain and accelerate the quality of future large-scale neural network simulations, as well as reducing the modeling complexity. This aim was achievable by performing the improved Izhikevich model, and inserting only the plausible firing patterns, and eliminating unrealistic ones.
The advent of large-scale and high-density extracellular recording devices allows simultaneous recording from thousands of neurons. However, the complexity and size of the data makes it mandatory to develop robust algorithms for fully automated spike sorting. Here it is shown that limitations imposed by biological constraints such as changes in spike waveforms induced under different drug regimes should be carefully taken into consideration in future developments.
In artificial neural networks trained with gradient descent, the weights used for processing stimuli are also used during backward passes to calculate gradients. For the real brain to approximate gradients, gradient information would have to be propagated separately, such that one set of synaptic weights is used for processing and another set is used for backward passes. This produces the so-called weight transport problem for biological models of learning, where the backward weights used to calculate gradients need to mirror the forward weights used to process stimuli. This weight transport problem has been considered so hard that popular proposals for biological learning assume that the backward weights are simply random, as in the feedback alignment algorithm. However, such random weights do not appear to work well for large networks. Here we show how the discontinuity introduced in a spiking system can lead to a solution to this problem. The resulting algorithm is a special case of an estimator used for causal inference in econometrics, regression discontinuity design. We show empirically that this algorithm rapidly makes the backward weights approximate the forward weights. As the backward weights become correct, this improves learning performance over feedback alignment on tasks such as Fashion-MNIST, SVHN, CIFAR-10 and VOC. Our results demonstrate that a simple learning rule in a spiking network can allow neurons to produce the right backward connections and thus solve the weight transport problem.