Do you want to publish a course? Click here

GRAVITAS: A Model Checking Based Planning and Goal Reasoning Framework for Autonomous Systems

111   0   0.0 ( 0 )
 Added by Zhe Hou
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

While AI techniques have found many successful applications in autonomous systems, many of them permit behaviours that are difficult to interpret and may lead to uncertain results. We follow the verification as planning paradigm and propose to use model checking techniques to solve planning and goal reasoning problems for autonomous systems. We give a new formulation of Goal Task Network (GTN) that is tailored for our model checking based framework. We then provide a systematic method that models GTNs in the model checker Process Analysis Toolkit (PAT). We present our planning and goal reasoning system as a framework called Goal Reasoning And Verification for Independent Trusted Autonomous Systems (GRAVITAS) and discuss how it helps provide trustworthy plans in an uncertain environment. Finally, we demonstrate the proposed ideas in an experiment that simulates a survey mission performed by the REMUS-100 autonomous underwater vehicle.



rate research

Read More

Goal-oriented dialogue systems typically rely on components specifically developed for a single task or domain. This limits such systems in two different ways: If there is an update in the task domain, the dialogue system usually needs to be updated or completely re-trained. It is also harder to extend such dialogue systems to different and multiple domains. The dialogue state tracker in conventional dialogue systems is one such component - it is usually designed to fit a well-defined application domain. For example, it is common for a state variable to be a categorical distribution over a manually-predefined set of entities (Henderson et al., 2013), resulting in an inflexible and hard-to-extend dialogue system. In this paper, we propose a new approach for dialogue state tracking that can generalize well over multiple domains without incorporating any domain-specific knowledge. Under this framework, discrete dialogue state variables are learned independently and the information of a predefined set of possible values for dialogue state variables is not required. Furthermore, it enables adding arbitrary dialogue context as features and allows for multiple values to be associated with a single state variable. These characteristics make it much easier to expand the dialogue state space. We evaluate our framework using the widely used dialogue state tracking challenge data set (DSTC2) and show that our framework yields competitive results with other state-of-the-art results despite incorporating little domain knowledge. We also show that this framework can benefit from widely available external resources such as pre-trained word embeddings.
82 - Zhiyu Liu , Meng Jiang , Hai Lin 2020
We aim to enable an autonomous robot to learn new skills from demo videos and use these newly learned skills to accomplish non-trivial high-level tasks. The goal of developing such autonomous robot involves knowledge representation, specification mining, and automated task planning. For knowledge representation, we use a graph-based spatial temporal logic (GSTL) to capture spatial and temporal information of related skills demonstrated by demo videos. We design a specification mining algorithm to generate a set of parametric GSTL formulas from demo videos by inductively constructing spatial terms and temporal formulas. The resulting parametric GSTL formulas from specification mining serve as a domain theory, which is used in automated task planning for autonomous robots. We propose an automatic task planning based on GSTL where a proposer is used to generate ordered actions, and a verifier is used to generate executable task plans. A table setting example is used throughout the paper to illustrate the main ideas.
In this paper, we present ViSTA, a framework for Virtual Scenario-based Testing of Autonomous Vehicles (AV), developed as part of the 2021 IEEE Autonomous Test Driving AI Test Challenge. Scenario-based virtual testing aims to construct specific challenges posed for the AV to overcome, albeit in virtual test environments that may not necessarily resemble the real world. This approach is aimed at identifying specific issues that arise safety concerns before an actual deployment of the AV on the road. In this paper, we describe a comprehensive test case generation approach that facilitates the design of special-purpose scenarios with meaningful parameters to form test cases, both in automated and manual ways, leveraging the strength and weaknesses of either. Furthermore, we describe how to automate the execution of test cases, and analyze the performance of the AV under these test cases.
137 - Majid Khonji , Jorge Dias , 2019
A significant barrier to deploying autonomous vehicles (AVs) on a massive scale is safety assurance. Several technical challenges arise due to the uncertain environment in which AVs operate such as road and weather conditions, errors in perception and sensory data, and also model inaccuracy. In this paper, we propose a system architecture for risk-aware AVs capable of reasoning about uncertainty and deliberately bounding the risk of collision below a given threshold. We discuss key challenges in the area, highlight recent research developments, and propose future research directions in three subsystems. First, a perception subsystem that detects objects within a scene while quantifying the uncertainty that arises from different sensing and communication modalities. Second, an intention recognition subsystem that predicts the driving-style and the intention of agent vehicles (and pedestrians). Third, a planning subsystem that takes into account the uncertainty, from perception and intention recognition subsystems, and propagates all the way to control policies that explicitly bound the risk of collision. We believe that such a white-box approach is crucial for future adoption of AVs on a large scale.
We present the Goal Uncertain Stochastic Shortest Path (GUSSP) problem -- a general framework to model path planning and decision making in stochastic environments with goal uncertainty. The framework extends the stochastic shortest path (SSP) model to dynamic environments in which it is impossible to determine the exact goal states ahead of plan execution. GUSSPs introduce flexibility in goal specification by allowing a belief over possible goal configurations. The unique observations at potential goals helps the agent identify the true goal during plan execution. The partial observability is restricted to goals, facilitating the reduction to an SSP with a modified state space. We formally define a GUSSP and discuss its theoretical properties. We then propose an admissible heuristic that reduces the planning time using FLARES -- a start-of-the-art probabilistic planner. We also propose a determinization approach for solving this class of problems. Finally, we present empirical results on a search and rescue mobile robot and three other problem domains in simulation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا