Do you want to publish a course? Click here

Risk-Aware Reasoning for Autonomous Vehicles

138   0   0.0 ( 0 )
 Added by Majid Khonji
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

A significant barrier to deploying autonomous vehicles (AVs) on a massive scale is safety assurance. Several technical challenges arise due to the uncertain environment in which AVs operate such as road and weather conditions, errors in perception and sensory data, and also model inaccuracy. In this paper, we propose a system architecture for risk-aware AVs capable of reasoning about uncertainty and deliberately bounding the risk of collision below a given threshold. We discuss key challenges in the area, highlight recent research developments, and propose future research directions in three subsystems. First, a perception subsystem that detects objects within a scene while quantifying the uncertainty that arises from different sensing and communication modalities. Second, an intention recognition subsystem that predicts the driving-style and the intention of agent vehicles (and pedestrians). Third, a planning subsystem that takes into account the uncertainty, from perception and intention recognition subsystems, and propagates all the way to control policies that explicitly bound the risk of collision. We believe that such a white-box approach is crucial for future adoption of AVs on a large scale.



rate research

Read More

Risk is traditionally described as the expected likelihood of an undesirable outcome, such as collisions for autonomous vehicles. Accurately predicting risk or potentially risky situations is critical for the safe operation of autonomous vehicles. In our previous work, we showed that risk could be characterized by two components: 1) the probability of an undesirable outcome and 2) an estimate of how undesirable the outcome is (loss). This paper is an extension to our previous work. In this paper, using our trained deep reinforcement learning model for navigating around crowds, we developed a risk-based decision-making framework for the autonomous vehicle that integrates the high-level risk-based path planning with the reinforcement learning-based low-level control. We evaluated our method in a high-fidelity simulation such as CARLA. This work can improve safety by allowing an autonomous vehicle to one day avoid and react to risky situations.
In this paper, we present ViSTA, a framework for Virtual Scenario-based Testing of Autonomous Vehicles (AV), developed as part of the 2021 IEEE Autonomous Test Driving AI Test Challenge. Scenario-based virtual testing aims to construct specific challenges posed for the AV to overcome, albeit in virtual test environments that may not necessarily resemble the real world. This approach is aimed at identifying specific issues that arise safety concerns before an actual deployment of the AV on the road. In this paper, we describe a comprehensive test case generation approach that facilitates the design of special-purpose scenarios with meaningful parameters to form test cases, both in automated and manual ways, leveraging the strength and weaknesses of either. Furthermore, we describe how to automate the execution of test cases, and analyze the performance of the AV under these test cases.
An excellent self-driving car is expected to take its passengers safely and efficiently from one place to another. However, different ways of defining safety and efficiency may significantly affect the conclusion we make. In this paper, we give formal definitions to the safe state of a road and safe state of a vehicle using the syntax of linear temporal logic (LTL). We then propose the concept of safe driving throughput (SDT) and safe driving capacity (SDC) which measure the amount of vehicles in the safe state on a road. We analyze how SDT is affected by different factors. We show the analytic difference of SDC between the road with perception-based vehicles (PBV) and the road with cooperative-based vehicles (CBV). We claim that through proper design, the SDC of the road filled with PBVs will be upper-bounded by the SDC of the road filled with CBVs.
Autonomous systems often operate in environments where the behavior of multiple agents is coordinated by a shared global state. Reliable estimation of the global state is thus critical for successfully operating in a multi-agent setting. We introduce agent-aware state estimation -- a framework for calculating indirect estimations of state given observations of the behavior of other agents in the environment. We also introduce transition-independent agent-aware state estimation -- a tractable class of agent-aware state estimation -- and show that it allows the speed of inference to scale linearly with the number of agents in the environment. As an example, we model traffic light classification in instances of complete loss of direct observation. By taking into account observations of vehicular behavior from multiple directions of traffic, our approach exhibits accuracy higher than that of existing traffic light-only HMM methods on a real-world autonomous vehicle data set under a variety of simulated occlusion scenarios.
114 - Fei Ye , Pin Wang , Ching-Yao Chan 2020
Recent advances in supervised learning and reinforcement learning have provided new opportunities to apply related methodologies to automated driving. However, there are still challenges to achieve automated driving maneuvers in dynamically changing environments. Supervised learning algorithms such as imitation learning can generalize to new environments by training on a large amount of labeled data, however, it can be often impractical or cost-prohibitive to obtain sufficient data for each new environment. Although reinforcement learning methods can mitigate this data-dependency issue by training the agent in a trial-and-error way, they still need to re-train policies from scratch when adapting to new environments. In this paper, we thus propose a meta reinforcement learning (MRL) method to improve the agents generalization capabilities to make automated lane-changing maneuvers at different traffic environments, which are formulated as different traffic congestion levels. Specifically, we train the model at light to moderate traffic densities and test it at a new heavy traffic density condition. We use both collision rate and success rate to quantify the safety and effectiveness of the proposed model. A benchmark model is developed based on a pretraining method, which uses the same network structure and training tasks as our proposed model for fair comparison. The simulation results shows that the proposed method achieves an overall success rate up to 20% higher than the benchmark model when it is generalized to the new environment of heavy traffic density. The collision rate is also reduced by up to 18% than the benchmark model. Finally, the proposed model shows more stable and efficient generalization capabilities adapting to the new environment, and it can achieve 100% successful rate and 0% collision rate with only a few steps of gradient updates.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا