Do you want to publish a course? Click here

Selected graphenelike zigzag nanoribbons with chemically functionalized edges: Implications for electronic and magnetic properties

127   0   0.0 ( 0 )
 Added by Stefan Krompiewski
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is known that there is a wide class of quasi-two-dimensional graphenelike nanomaterials which in many respects can outperform graphene. So, here in addition to graphene, the attention is directed to stanene (buckled honeycomb structure) and phosphorene (puckered honeycomb structure). It is shown that, depending on the doping, these materials can have magnetically ordered edges. Computed diagrams of magnetic phases illustrate that, on the one hand, n-type doped narrow zigzag nanoribbons of graphene and stanene have antiferromagnetically aligned magnetic moments between the edges. On the other hand, however, in the case of phosphorene nanoribbons the zigzag edges can have ferromagnetically aligned magnetic moments for the p-type doping. The edge magnetism critically influences transport properties of the nanoribbons, and if adequately controlled can make them attractive for spintronics.



rate research

Read More

Resonant scatterers such as hydrogen adatoms can strongly enhance the low energy density of states in graphene. Here, we study the impact of these impurities on the electronic screening. We find a two-faced behavior: Kubo formula calculations reveal an increased dielectric function $varepsilon$ upon creation of midgap states but no metallic divergence of the static $varepsilon$ at small momentum transfer $qto 0$. This bad metal behavior manifests also in the dynamic polarization function and can be directly measured by means of electron energy loss spectroscopy. A new length scale $l_c$ beyond which screening is suppressed emerges, which we identify with the Anderson localization length.
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena that have sparked renewed interest in carbon-based spintronics. Zigzag graphene nanoribbons (ZGNRs), quasi one-dimensional semiconducting strips of graphene featuring two parallel zigzag edges along the main axis of the ribbon, are predicted to host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width. Despite recent advances in the bottom-up synthesis of atomically-precise ZGNRs, their unique electronic structure has thus far been obscured from direct observations by the innate chemical reactivity of spin-ordered edge states. Here we present a general technique for passivating the chemically highly reactive spin-polarized edge states by introducing a superlattice of substitutional nitrogen-dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunneling spectroscopy reveal a giant spin splitting of the low-lying nitrogen lone-pair flat bands by a large exchange field (~850 Tesla) induced by the spin-polarized ferromagnetically ordered edges of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices.
Motivated by the recent synthesis of single layer TiSe2 , we used state-of-the-art density functional theory calculations, to investigate the structural and electronic properties of zigzag and armchair- edged nanoribbons of this material. Our analysis reveals that, differing from ribbons of other ultra-thin materials such as graphene, TiSe2 nanoribbons have some distinctive properties. The electronic band gap of the nanoribbons decreases exponentially with the width and vanishes for ribbons wider than 20 Angstroms. For ultranarrow zigzag-edged nanoribbons we find odd-even oscillations in the band gap width, although their band structures show similar features. Moreover, our detailed magnetic-ground-state analysis reveals that zigzag and armchair edged ribbons have nonmagnetic ground states. Passivating the dangling bonds with hydrogen at the edges of the structures influences the band dispersion. Our results shed light on the characteristic properties of T phase nanoribbons of similar crystal structures.
Quantum-dot states in graphene nanoribbons (GNR) were calculated using density-functional theory, considering the effect of the electric field of gate electrodes. The field is parallel to the GNR plane and was generated by an inhomogeneous charge sheet placed atop the ribbon. Varying the electric field allowed to observe the development of the GNR states and the formation of localized, quantum-dot-like states in the band gap. The calculation has been performed for armchair GNRs and for armchair ribbons with a zigzag section. For the armchair GNR a static dielectric constant of {epsilon} approx. 4 could be determined.
Carbon-based magnetic structures promise significantly longer coherence times than traditional magnetic materials, which is of fundamental importance for spintronic applications. An elegant way of achieving carbon-based magnetic moments is the design of graphene nanostructures with an imbalanced occupation of the two sublattices forming the carbon honeycomb lattice. According to Liebs theorem, this induces local magnetic moments that are proportional to the sublattice imbalance. Exact positioning of sublattice imbalanced nanostructures in graphene nanomaterials hence offers a route to control interactions between induced local magnetic moments and to obtain graphene nanomaterials with magnetically non-trivial ground states. Here, we show that such sublattice imbalanced nanostructures can be incorporated along a large band gap armchair graphene nanoribbon on the basis of asymmetric zigzag edge extensions, which is achieved by incorporating specifically designed precursor monomers during the bottom-up fabrication of the graphene nanoribbons. Scanning tunneling spectroscopy of an isolated and electronically decoupled zigzag edge extension reveals Hubbard-split states in accordance with theoretical predictions. Investigation of pairs of such zigzag edge extensions reveals ferromagnetic, antiferromagnetic or quenching of the magnetic interactions depending on the relative alignment of the asymmetric edge extensions. Moreover, a ferromagnetic spin chain is demonstrated for a periodic pattern of zigzag edge extensions along the nanoribbon axis. This work opens a route towards the design and fabrication of graphene nanoribbon-based spin chains with complex magnetic ground states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا