Do you want to publish a course? Click here

Electronic properties of graphene nanoribbons under gate electric fields

200   0   0.0 ( 0 )
 Added by Tobias Burnus
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum-dot states in graphene nanoribbons (GNR) were calculated using density-functional theory, considering the effect of the electric field of gate electrodes. The field is parallel to the GNR plane and was generated by an inhomogeneous charge sheet placed atop the ribbon. Varying the electric field allowed to observe the development of the GNR states and the formation of localized, quantum-dot-like states in the band gap. The calculation has been performed for armchair GNRs and for armchair ribbons with a zigzag section. For the armchair GNR a static dielectric constant of {epsilon} approx. 4 could be determined.



rate research

Read More

113 - Chiun-Yan Lin , , Ming-Fa Lin 2019
The electronic properties and optical excitations are investigated in the geometry- and field-modulated bilayer graphene systems, respectively, by using the tight-binding model and Kubo formula. The stacking symmetry of bilayer graphene can be manipulated by varying the width and position of domain wall (DW) within two normally stacked graphene. All the layer-dependent atomic interactions are taken into consideration under external fields. The modulation of stacking configuration gives rise to significant effects of zone folding on energy subbands, subenvelope wave functions, density of states, and optical absorption spectra. This study clearly illustrates the diverse 1D phenomena in the energy band structure and absorption spectra; the DW- and $V_z$-created dramatic variations are comprehensively explored under accurate calculations and delicate analysis. Concise physical pictures are proposed to give further insight into the quasi-1D behaviors.
464 - Fangzhou Zhao , Ting Cao , 2021
Graphene nanoribbons (GNRs) possess distinct symmetry-protected topological phases. We show, through first-principles calculations, that by applying an experimentally accessible transverse electric field (TEF), certain boron and nitrogen periodically co-doped GNRs have tunable topological phases. The tunability arises from a field-induced band inversion due to an opposite response of the conduction- and valance-band states to the electric field. With a spatially-varying applied field, segments of GNRs of distinct topological phases are created, resulting in a field-programmable array of topological junction states, each may be occupied with charge or spin. Our findings not only show that electric field may be used as an easy tuning knob for topological phases in quasi-one-dimensional systems, but also provide new design principles for future GNR-based quantum electronic devices through their topological characters.
173 - I. Deretzis , A. La Magna 2009
We present electronic structure calculations of few-layer epitaxial graphene nanoribbons on SiC(0001). Trough an atomistic description of the graphene layers and the substrate within the extended H{u}ckel Theory and real/momentum space projections we argue that the role of the heterostructures interface becomes crucial for the conducting capacity of the studied systems. The key issue arising from this interaction is a Fermi level pinning effect introduced by dangling interface bonds. Such phenomenon is independent from the width of the considered nanostructures, compromising the importance of confinement in these systems.
Room-temperature polar skyrmion bubbles that are recently found in oxide superlattice, have received enormous interests for their potential applications in nanoelectronics due to the nanometer size, emergent chirality, and negative capacitance. For practical applications, the ability to controllably manipulate them by using external stimuli is prerequisite. Here, we study the dynamics of individual polar skyrmion bubbles at the nanoscale by using in situ biasing in a scanning transmission electron microscope. The reversible electric field-driven phase transition between topological and trivial polar states are demonstrated. We create, erase and monitor the shrinkage and expansion of individual polar skyrmions. We find that their transition behaviors are substantially different from that of magnetic analogue. The underlying mechanism is discussed by combing with the phase-field simulations. The controllable manipulation of nanoscale polar skyrmions allows us to tune the dielectric permittivity at atomic scale and detailed knowledge of their phase transition behaviors provides fundamentals for their applications in nanoelectronics.
91 - L. Brey , H.A. Fertig 2006
We study the electronic states of narrow graphene ribbons (``nanoribbons) with zigzag and armchair edges. The finite width of these systems breaks the spectrum into an infinite set of bands, which we demonstrate can be quantitatively understood using the Dirac equation with appropriate boundary conditions. For the zigzag nanoribbon we demonstrate that the boundary condition allows a particle- and a hole-like band with evanescent wavefunctions confined to the surfaces, which continuously turn into the well-known zero energy surface states as the width gets large. For armchair edges, we show that the boundary condition leads to admixing of valley states, and the band structure is metallic when the width of the sample in lattice constant units is divisible by 3, and insulating otherwise. A comparison of the wavefunctions and energies from tight-binding calculations and solutions of the Dirac equations yields quantitative agreement for all but the narrowest ribbons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا