No Arabic abstract
In this paper, we propose an impartial simultaneous wireless information and power transfer (SWIPT)-assisted cooperation mechanism for a non-orthogonal multiple access (NOMA) downlink scenario. Specifically, both a cell-center user and a cell-edge user apply the power-splitting technique and utilize the harvested energy to forward the other users information on the premise of successful decoding of their own information. Both analytical and numerical results show that the proposed impartial user cooperation mechanism (IUCM) outperforms the traditional partial cooperation mechanism in terms of outage probability, diversity order and diversity-multiplexing trade-off (DMT). For comparison, we further incorporate the IUCM into an orthogonal frequency-division multiple access (OFDMA) framework, which is shown to preserve the same diversity order, while has a worse but more flexible DMT performance in comparison with the IUCM in the NOMA framework. Although the IUCM in OFDMA has a worse outage performance, it is proved that it has the same optimal system outage probability with the IUCM in NOMA when the relaying channel between the two users is error-free.
In this paper, we consider the coded-caching broadcast network with user cooperation, where a server connects with multiple users and the users can cooperate with each other through a cooperation network. We propose a centralized coded caching scheme based on a new deterministic placement strategy and a parallel delivery strategy. It is shown that the new scheme optimally allocate the communication loads on the server and users, obtaining cooperation gain and parallel gain that greatly reduces the transmission delay. Furthermore, we show that the number of users who parallelly send information should decrease when the users caching size increases. In other words, letting more users parallelly send information could be harmful. Finally, we derive a constant multiplicative gap between the lower bound and upper bound on the transmission delay, which proves that our scheme is order optimal.
In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix, and the power splitting ratio is conducted to minimize the transmit power under the target secrecy rate, the total transmit power, and the harvested energy constraints. The original problem is shown to be non-convex, which is tackled by a two-layer decomposition approach. The inner layer problem is solved through semi-definite relaxation, and the outer problem is shown to be a single-variable optimization that can be solved by one-dimensional (1-D) line search. To reduce computational complexity, a sequential parametric convex approximation (SPCA) method is proposed to find a near-optimal solution. Furthermore, tightness of the relaxation for the 1-D search method is validated by showing that the optimal solution of the relaxed problem is rank-one. Simulation results demonstrate that the proposed SPCA method achieves the same performance as the scheme based on 1-D search method but with much lower complexity.
In this paper, we investigate the transmission delay of cache-aided broadcast networks with user cooperation. Novel coded caching schemes are proposed for both centralized and decentralized caching settings, by efficiently exploiting time and cache resources and creating parallel data delivery at the server and users. We derive a lower bound on the transmission delay and show that the proposed centralized coded caching scheme is emph{order-optimal} in the sense that it achieves a constant multiplicative gap within the lower bound. Our decentralized coded caching scheme is also order-optimal when each users cache size is larger than the threshold $N(1-sqrt[{K-1}]{ {1}/{(K+1)}})$ (approaching 0 as $Kto infty$), where $K$ is the total number of users and $N$ is the size of file library. Moreover, for both the centralized and decentralized caching settings, our schemes obtain an additional emph{cooperation gain} offered by user cooperation and an additional emph{parallel gain} offered by the parallel transmission among the server and users. It is shown that in order to reduce the transmission delay, the number of users parallelly sending signals should be appropriately chosen according to users cache size, and alway letting more users parallelly send information could cause high transmission delay.
In this paper, intelligent reflecting surface (IRS) is proposed to enhance the physical layer security in the Rician fading channel where the angular direction of the eavesdropper is aligned with a legitimate user. In this scenario, we consider a two-phase communication system under the active attacks and passive eavesdropping. Particularly, in the first phase, the base station avoids direct transmission to the attacked user. While, in the second phase, other users cooperate to forward signals to the attacked user with the help of IRS and energy harvesting technology. Under the active attacks, we investigate an outage constrained beamforming design problem under the statistical cascaded channel error model, which is solved by using the Bernstein-type inequality. As for the passive eavesdropping, an average secrecy rate maximization problem is formulated, which is addressed by a low complexity algorithm. Numerical results show that the negative effect of the eavesdroppers channel error is greater than that of the legitimate user.
In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix, and the power splitting ratio is conducted to minimize the transmit power under the target secrecy rate, the total transmit power, and the harvested energy constraints. The original problem is shown to be non-convex, which is tackled by a two-layer decomposition approach. The inner layer problem is solved through semi-definite relaxation, and the outer problem, on the other hand, is shown to be a single- variable optimization that can be solved by one-dimensional (1- D) line search. To reduce computational complexity, a sequential parametric convex approximation (SPCA) method is proposed to find a near-optimal solution. The work is then extended to the imperfect channel state information case with norm-bounded channel errors. Furthermore, tightness of the relaxation for the proposed schemes are validated by showing that the optimal solution of the relaxed problem is rank-one. Simulation results demonstrate that the proposed SPCA method achieves the same performance as the scheme based on 1-D but with much lower complexity.