Do you want to publish a course? Click here

User Cooperation for IRS-aided Secure SWIPT MIMO Systems

117   0   0.0 ( 0 )
 Added by Cunhua Pan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, intelligent reflecting surface (IRS) is proposed to enhance the physical layer security in the Rician fading channel where the angular direction of the eavesdropper is aligned with a legitimate user. In this scenario, we consider a two-phase communication system under the active attacks and passive eavesdropping. Particularly, in the first phase, the base station avoids direct transmission to the attacked user. While, in the second phase, other users cooperate to forward signals to the attacked user with the help of IRS and energy harvesting technology. Under the active attacks, we investigate an outage constrained beamforming design problem under the statistical cascaded channel error model, which is solved by using the Bernstein-type inequality. As for the passive eavesdropping, an average secrecy rate maximization problem is formulated, which is addressed by a low complexity algorithm. Numerical results show that the negative effect of the eavesdroppers channel error is greater than that of the legitimate user.



rate research

Read More

In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix, and the power splitting ratio is conducted to minimize the transmit power under the target secrecy rate, the total transmit power, and the harvested energy constraints. The original problem is shown to be non-convex, which is tackled by a two-layer decomposition approach. The inner layer problem is solved through semi-definite relaxation, and the outer problem is shown to be a single-variable optimization that can be solved by one-dimensional (1-D) line search. To reduce computational complexity, a sequential parametric convex approximation (SPCA) method is proposed to find a near-optimal solution. Furthermore, tightness of the relaxation for the 1-D search method is validated by showing that the optimal solution of the relaxed problem is rank-one. Simulation results demonstrate that the proposed SPCA method achieves the same performance as the scheme based on 1-D search method but with much lower complexity.
In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix, and the power splitting ratio is conducted to minimize the transmit power under the target secrecy rate, the total transmit power, and the harvested energy constraints. The original problem is shown to be non-convex, which is tackled by a two-layer decomposition approach. The inner layer problem is solved through semi-definite relaxation, and the outer problem, on the other hand, is shown to be a single- variable optimization that can be solved by one-dimensional (1- D) line search. To reduce computational complexity, a sequential parametric convex approximation (SPCA) method is proposed to find a near-optimal solution. The work is then extended to the imperfect channel state information case with norm-bounded channel errors. Furthermore, tightness of the relaxation for the proposed schemes are validated by showing that the optimal solution of the relaxed problem is rank-one. Simulation results demonstrate that the proposed SPCA method achieves the same performance as the scheme based on 1-D but with much lower complexity.
This article aims to reduce huge pilot overhead when estimating the reconfigurable intelligent surface (RIS) relayed wireless channel. Motivated by the compelling grasp of deep learning in tackling nonlinear mapping problems, the proposed approach only activates a part of RIS elements and utilizes the corresponding cascaded channel estimate to predict another part. Through a synthetic deep neural network (DNN), the direct channel and active cascaded channel are first estimated sequentially, followed by the channel prediction for the inactive RIS elements. A three-stage training strategy is developed for this synthetic DNN. From simulation results, the proposed deep learning based approach is effective in reducing the pilot overhead and guaranteeing the reliable estimation accuracy.
A reconfigurable intelligent surface (RIS) can shape the radio propagation environment by virtue of changing the impinging electromagnetic waves towards any desired directions, thus, breaking the general Snells reflection law. However, the optimal control of the RIS requires perfect channel state information (CSI) of the individual channels that link the base station (BS) and the mobile station (MS) to each other via the RIS. Thereby super-resolution channel (parameter) estimation needs to be efficiently conducted at the BS or MS with CSI feedback to the RIS controller. In this paper, we adopt a two-stage channel estimation scheme for RIS-aided millimeter wave (mmWave) MIMO systems without a direct BS-MS channel, using atomic norm minimization to sequentially estimate the channel parameters, i.e., angular parameters, angle differences, and products of propagation path gains. We evaluate the mean square error of the parameter estimates, the RIS gains, the average effective spectrum efficiency bound, and average squared distance between the designed beamforming and combining vectors and the optimal ones. The results demonstrate that the proposed scheme achieves super-resolution estimation compared to the existing benchmark schemes, thus offering promising performance in the subsequent data transmission phase.
While mmWave bands provide a large bandwidth for mobile broadband services, they suffer from severe path loss and shadowing. Multiple-antenna techniques such as beamforming (BF) can be applied to compensate the signal attenuation. We consider a special case of hybrid BF called per-stream hybrid BF (PSHBF) which is easier to implement than the general hybrid BF because it circumvents the need for joint analog-digital beamformer optimization. Employing BF at the base station enables the transmission of multiple data streams to several users in the same resource block. In this paper, we provide an offline study of proportional fair multi-user scheduling in a mmWave system with PSHBF to understand the impact of various system parameters on the performance. We formulate multi-user scheduling as an optimization problem. To tackle the non-convexity, we provide a feasible solution and show through numerical examples that the performance of the provided solution is very close to an upper-bound. Using this framework, we provide extensive numerical investigations revealing several engineering insights.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا