No Arabic abstract
We discuss quantum annealing of the two-dimensional transverse-field Ising model on a D-Wave device, encoded on $L times L$ lattices with $L le 32$. Analyzing the residual energy and deviation from maximal magnetization in the final classical state, we find an optimal $L$ dependent annealing rate $v$ for which the two quantities are minimized. The results are well described by a phenomenological model with two powers of $v$ and $L$-dependent prefactors to describe the competing effects of reduced quantum fluctuations (for which we see evidence of the Kibble-Zurek mechanism) and increasing noise impact when $v$ is lowered. The same scaling form also describes results of numerical solutions of a transverse-field Ising model with the spins coupled to noise sources. We explain why the optimal annealing time is much longer than the coherence time of the individual qubits.
We assess the prospects for algorithms within the general framework of quantum annealing (QA) to achieve a quantum speedup relative to classical state of the art methods in combinatorial optimization and related sampling tasks. We argue for continued exploration and interest in the QA framework on the basis that improved coherence times and control capabilities will enable the near-term exploration of several heuristic quantum optimization algorithms that have been introduced in the literature. These continuous-time Hamiltonian computation algorithms rely on control protocols that are more advanced than those in traditional ground-state QA, while still being considerably simpler than those used in gate-model implementations. The inclusion of coherent diabatic transitions to excited states results in a generalization called diabatic quantum annealing (DQA), which we argue for as the most promising route to quantum enhancement within this framework. Other promising variants of traditional QA include reverse annealing and continuous-time quantum walks, as well as analog analogues of parameterized quantum circuit ansatzes for machine learning. Most of these algorithms have no known (or likely to be discovered) efficient classical simulations, and in many cases have promising (but limited) early signs for the possibility of quantum speedups, making them worthy of further investigation with quantum hardware in the intermediate-scale regime. We argue that all of these protocols can be explored in a state-of-the-art manner by embracing the full range of novel out-of-equilibrium quantum dynamics generated by time-dependent effective transverse-field Ising Hamiltonians that can be natively implemented by, e.g., inductively-coupled flux qubits, both existing and projected at application scale.
In order to treat all-to-all connected quadratic binary optimization problems (QUBO) with hardware quantum annealers, an embedding of the original problem is required due to the sparsity of the hardwares topology. Embedding fully-connected graphs -- typically found in industrial applications -- incurs a quadratic space overhead and thus a significant overhead in the time to solution. Here we investigate this embedding penalty of established planar embedding schemes such as minor embedding on a square lattice, minor embedding on a Chimera graph, and the Lechner-Hauke-Zoller scheme using simulated quantum annealing on classical hardware. Large-scale quantum Monte Carlo simulation suggest a polynomial time-to-solution overhead. Our results demonstrate that standard analog quantum annealing hardware is at a disadvantage in comparison to classical digital annealers, as well as gate-model quantum annealers and could also serve as benchmark for improvements of the standard quantum annealing protocol.
Prediction of financial crashes in a complex financial network is known to be an NP-hard problem, which means that no known algorithm can guarantee to find optimal solutions efficiently. We experimentally explore a novel approach to this problem by using a D-Wave quantum computer, benchmarking its performance for attaining financial equilibrium. To be specific, the equilibrium condition of a nonlinear financial model is embedded into a higher-order unconstrained binary optimization (HUBO) problem, which is then transformed to a spin-$1/2$ Hamiltonian with at most two-qubit interactions. The problem is thus equivalent to finding the ground state of an interacting spin Hamiltonian, which can be approximated with a quantum annealer. The size of the simulation is mainly constrained by the necessity of a large quantity of physical qubits representing a logical qubit with the correct connectivity. Our experiment paves the way to codify this quantitative macroeconomics problem in quantum computers.
Quantum chemistry is regarded to be one of the first disciplines that will be revolutionized by quantum computing. Although universal quantum computers of practical scale may be years away, various approaches are currently being pursued to solve quantum chemistry problems on near-term gate-based quantum computers and quantum annealers by developing the appropriate algorithm and software base. This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer. The approach is based on the matrix formulation, efficiently uses qubit resources based on a power-of-two encoding scheme and is hardware-dominant relying on only one classically optimized parameter. We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems. This approach can be adapted for use by a vast majority of electronic structure methods currently implemented in conventional quantum-chemical packages. The results of this work will encourage further development of software such as qbsolv which has promising applications in emerging quantum information processing hardware and is able to address large and complex optimization problems intractable for classical computers.
We study the application of a counter-diabatic driving (CD) technique to enhance the thermodynamic efficiency and power of a quantum Otto refrigerator based on a superconducting qubit coupled to two resonant circuits. Although the CD technique is originally designed to counteract non-adiabatic coherent excitations in isolated systems, we find that it also works effectively in the open system dynamics, improving the coherence-induced losses of efficiency and power. We compare the CD dynamics with its classical counterpart, and find a deviation that arises because the CD is designed to follow the energy eigenbasis of the original Hamiltonian, but the heat baths thermalize the system in a different basis. We also discuss possible experimental realizations of our model.