No Arabic abstract
In order to treat all-to-all connected quadratic binary optimization problems (QUBO) with hardware quantum annealers, an embedding of the original problem is required due to the sparsity of the hardwares topology. Embedding fully-connected graphs -- typically found in industrial applications -- incurs a quadratic space overhead and thus a significant overhead in the time to solution. Here we investigate this embedding penalty of established planar embedding schemes such as minor embedding on a square lattice, minor embedding on a Chimera graph, and the Lechner-Hauke-Zoller scheme using simulated quantum annealing on classical hardware. Large-scale quantum Monte Carlo simulation suggest a polynomial time-to-solution overhead. Our results demonstrate that standard analog quantum annealing hardware is at a disadvantage in comparison to classical digital annealers, as well as gate-model quantum annealers and could also serve as benchmark for improvements of the standard quantum annealing protocol.
Quantum annealers aim at solving non-convex optimization problems by exploiting cooperative tunneling effects to escape local minima. The underlying idea consists in designing a classical energy function whose ground states are the sought optimal solutions of the original optimization problem and add a controllable quantum transverse field to generate tunneling processes. A key challenge is to identify classes of non-convex optimization problems for which quantum annealing remains efficient while thermal annealing fails. We show that this happens for a wide class of problems which are central to machine learning. Their energy landscapes is dominated by local minima that cause exponential slow down of classical thermal annealers while simulated quantum annealing converges efficiently to rare dense regions of optimal solutions.
Recently, there has been considerable interest in solving optimization problems by mapping these onto a binary representation, sparked mostly by the use of quantum annealing machines. Such binary representation is reminiscent of a discrete physical two-state system, such as the Ising model. As such, physics-inspired techniques -- commonly used in fundamental physics studies -- are ideally suited to solve optimization problems in a binary format. While binary representations can be often found for paradigmatic optimization problems, these typically result in k-local higher-order unconstrained binary optimization cost functions. In this work, we discuss the effects of locality reduction needed for the majority of the currently available quantum and quantum-inspired solvers that can only accommodate 2-local (quadratic) cost functions. General locality reduction approaches require the introduction of ancillary variables which cause an overhead over the native problem. Using a parallel tempering Monte Carlo solver on Microsoft Azure Quantum, as well as k-local binary problems with planted solutions, we show that post reduction to a corresponding 2-local representation the problems become considerably harder to solve. We further quantify the increase in computational hardness introduced by the reduction algorithm by measuring the variation of number of variables, statistics of the coefficient values, and the population annealing entropic family size. Our results demonstrate the importance of avoiding locality reduction when solving optimization problems.
New annealing schedules for quantum annealing are proposed based on the adiabatic theorem. These schedules exhibit faster decrease of the excitation probability than a linear schedule. To derive this conclusion, the asymptotic form of the excitation probability for quantum annealing is explicitly obtained in the limit of long annealing time. Its first-order term, which is inversely proportional to the square of the annealing time, is shown to be determined only by the information at the initial and final times. Our annealing schedules make it possible to drop this term, thus leading to a higher order (smaller) excitation probability. We verify these results by solving numerically the time-dependent Schrodinger equation for small size systems
Quantum annealing is a generic name of quantum algorithms to use quantum-mechanical fluctuations to search for the solution of optimization problem. It shares the basic idea with quantum adiabatic evolution studied actively in quantum computation. The present paper reviews the mathematical and theoretical foundation of quantum annealing. In particular, theorems are presented for convergence conditions of quantum annealing to the target optimal state after an infinite-time evolution following the Schroedinger or stochastic (Monte Carlo) dynamics. It is proved that the same asymptotic behavior of the control parameter guarantees convergence both for the Schroedinger dynamics and the stochastic dynamics in spite of the essential difference of these two types of dynamics. Also described are the prescriptions to reduce errors in the final approximate solution obtained after a long but finite dynamical evolution of quantum annealing. It is shown there that we can reduce errors significantly by an ingenious choice of annealing schedule (time dependence of the control parameter) without compromising computational complexity qualitatively. A review is given on the derivation of the convergence condition for classical simulated annealing from the view point of quantum adiabaticity using a classical-quantum mapping.
Recently, it was demonstrated both theoretically and experimentally on the D-Wave quantum annealer that transverse-field quantum annealing does not find all ground states with equal probability. In particular, it was proposed that more complex driver Hamiltonians beyond transverse fields might mitigate this shortcoming. Here, we investigate the mechanisms of (un)fair sampling in quantum annealing. While higher-order terms can improve the sampling for selected small problems, we present multiple counterexamples where driver Hamiltonians that go beyond transverse fields do not remove the sampling bias. Using perturbation theory we explain why this is the case. In addition, we present large-scale quantum Monte Carlo simulations for spin glasses with known degeneracy in two space dimensions and demonstrate that the fair-sampling performance of quadratic driver terms is comparable to standard transverse-field drivers. Our results suggest that quantum annealing machines are not well suited for sampling applications, unless post-processing techniques to improve the sampling are applied.