Do you want to publish a course? Click here

Accurate many-body electronic structure near the basis set limit: application to the chromium dimer

282   0   0.0 ( 0 )
 Added by Yuan Yao
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a method for computing near-exact energies for correlated systems with large Hilbert spaces. The method efficiently identifies the most important basis states (Slater determinants) and performs a variational calculation in the subspace spanned by these determinants. A semistochastic approach is then used to add a perturbative correction to the variational energy to compute the total energy. The size of the variational space is progressively increased until the total energy converges to within the desired tolerance. We demonstrate the power of the method by computing a near-exact potential energy curve (PEC) for a very challenging molecule -- the chromium dimer.



rate research

Read More

There are many ways to numerically represent of chemical systems in order to compute their electronic structure. Basis functions may be localized in real-space (atomic orbitals), in momentum-space (plane waves), or in both components of phase-space. Such phase-space localized basis functions in the form of wavelets, have been used for many years in electronic structure. In this paper, we turn to a phase-space localized basis set first introduced by K. G. Wilson. We provide the first full study of this basis and its numerical implementation. To calculate electronic energies of a variety of small molecules and states, we utilize the sum-of-products form, Gaussian quadratures, and introduce methods for selecting sample points from a grid of phase-space localized Wilson basis. Both full configuration interaction and Hartree-Fock implementations are discussed and implemented numerically. As with many grid based methods, describing both tightly bound and diffuse orbitals is challenging so we have considered augmenting the Wilson basis set as projected Slater-type orbitals. We have also compared the Wilson basis set against the recently introduced wavelet transformed Gaussians (gausslets). Throughout, we give comments on the implementation and use small atoms and molecules to illustrate convergence properties of the Wilson basis.
66 - Yingzhou Li , Jianfeng Lu 2020
Full configuration interaction (FCI) solvers are limited to small basis sets due to their expensive computational costs. An optimal orbital selection for FCI (OptOrbFCI) is proposed to boost the power of existing FCI solvers to pursue the basis set limit under a computational budget. The optimization problem coincides with that of the complete active space SCF method (CASSCF), while OptOrbFCI is algorithmically quite different. OptOrbFCI effectively finds an optimal rotation matrix via solving a constrained optimization problem directly to compress the orbitals of large basis sets to one with a manageable size, conducts FCI calculations only on rotated orbital sets, and produces a variational ground-state energy and its wave function. Coupled with coordinate descent full configuration interaction (CDFCI), we demonstrate the efficiency and accuracy of the method on the carbon dimer and nitrogen dimer under basis sets up to cc-pV5Z. We also benchmark the binding curve of the nitrogen dimer under the cc-pVQZ basis set with 28 selected orbitals, which provide consistently lower ground-state energies than the FCI results under the cc-pVDZ basis set. The dissociation energy in this case is found to be of higher accuracy.
We describe our efforts of the past few years to create a large set of more than 500 highly-accurate vertical excitation energies of various natures ($pi to pi^*$, $n to pi^*$, double excitation, Rydberg, singlet, doublet, triplet, etc) in small- and medium-sized molecules. These values have been obtained using an incremental strategy which consists in combining high-order coupled cluster and selected configuration interaction calculations using increasingly large diffuse basis sets in order to reach high accuracy. One of the key aspect of the so-called QUEST database of vertical excitations is that it does not rely on any experimental values, avoiding potential biases inherently linked to experiments and facilitating theoretical cross comparisons. Following this composite protocol, we have been able to produce theoretical best estimate (TBEs) with the aug-cc-pVTZ basis set for each of these transitions, as well as basis set corrected TBEs (i.e., near the complete basis set limit) for some of them. The TBEs/aug-cc-pVTZ have been employed to benchmark a large number of (lower-order) wave function methods such as CIS(D), ADC(2), CC2, STEOM-CCSD, CCSD, CCSDR(3), CCSDT-3, ADC(3), CC3, NEVPT2, and others (including spin-scaled variants). In order to gather the huge amount of data produced during the QUEST project, we have created a website [https://lcpq.github.io/QUESTDB_website] where one can easily test and compare the accuracy of a given method with respect to various variables such as the molecule size or its family, the nature of the excited states, the type of basis set, etc. We hope that the present review will provide a useful summary of our effort so far and foster new developments around excited-state methods.
A level-set method is developed for numerically capturing the equilibrium solute-solvent interface that is defined by the recently proposed variational implicit solvent model (Dzubiella, Swanson, and McCammon, Phys. Rev. Lett. {bf 104}, 527 (2006) and J. Chem.Phys. {bf 124}, 084905 (2006)). In the level-set method, a possible solute-solvent interface is represented by the zero level-set (i.e., the zero level surface) of a level-set function and is eventually evolved into the equilibrium solute-solvent interface. The evolution law is determined by minimization of a solvation free energy {it functional} that couples both the interfacial energy and the van der Waals type solute-solvent interaction energy. The surface evolution is thus an energy minimizing process, and the equilibrium solute-solvent interface is an output of this process. The method is implemented and applied to the solvation of nonpolar molecules such as two xenon atoms, two parallel paraffin plates, helical alkane chains, and a single fullerene $C_{60}$. The level-set solutions show good agreement for the solvation energies when compared to available molecular dynamics simulations. In particular, the method captures solvent dewetting (nanobubble formation) and quantitatively describes the interaction in the strongly hydrophobic plate system.
104 - James J. Shepherd 2016
Basis set incompleteness error and finite size error can manifest concurrently in systems for which the two effects are phenomenologically well-separated in length scale. When this is true, we need not necessarily remove the two sources of error simultaneously. Instead, the errors can be found and remedied in different parts of the basis set. This would be of great benefit to a method such as coupled cluster theory since the combined cost of $n_{occ}^6 n_{virt}^4$ could be separated into $n_{occ}^6$ and $n_{virt}^4$ costs with smaller prefactors. In this Communication, we present analysis on a data set due to Baardsen and coworkers, containing coupled cluster doubles energies for the 2DEG for $r_s=$ 0.5, 1.0 and 2.0 a.u.~at a wide range of basis set sizes and particle numbers. In obtaining complete basis set limit thermodynamic limit results, we find that within a small and removable error the above assertion is correct for this simple system. This approach allows for the combination of methods which separately address finite size effects and basis set incompleteness error.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا