Do you want to publish a course? Click here

Unusual Valence State in the Antiperovskites Sr$_3$SnO and Sr$_3$PbO Revealed by X-ray Photoelectron Spectroscopy

72   0   0.0 ( 0 )
 Added by Dennis Huang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The class of antiperovskite compounds $A_3B$O ($A$ = Ca, Sr, Ba; $B$ = Sn, Pb) has attracted interest as a candidate 3D Dirac system with topological surface states protected by crystal symmetry. A key factor underlying the rich electronic structure of $A_3B$O is the unusual valence state of $B$, i.e., a formal oxidation state of $-4$. Practically, it is not obvious whether anionic $B$ can be stabilized in thin films, due to its unusual chemistry, as well as the polar surface of $A_3B$O, which may render the growth-front surface unstable. We report X-ray photoelectron spectroscopy (XPS) measurements of single-crystalline films of Sr$_3$SnO and Sr$_3$PbO grown by molecular beam epitaxy (MBE). We observe shifts in the core-level binding energies that originate from anionic Sn and Pb, consistent with density functional theory (DFT) calculations. Near the surface, we observe additional signatures of neutral or cationic Sn and Pb, which may point to an electronic or atomic reconstruction with possible impact on putative topological surface states.



rate research

Read More

We report a $mu$SR study on the antiperovskite oxide superconductor Sr$_{3-x}$SnO. With transverse-field $mu$SR, we observed the increase of the muon relaxation rate upon cooling below the superconducting transition temperature $T_{mathrm{c}}=5.4$ K, evidencing bulk superconductivity. The exponential temperature dependence of the relaxation rate $sigma$ at low temperatures suggests a fully gapped superconducting state. We evaluated the zero-temperature penetration depth $lambda(0)propto1/sqrt{sigma(0)}$ to be around 320-1020 nm. Such a large value is consistent with the picture of a doped Dirac semimetal. Moreover, we revealed that the ratio $T_{mathrm{c}}/lambda(0)^{-2}$ is larger than those of ordinary superconductors and is comparable to those of unconventional superconductors. The relatively high $T_{mathrm{c}}$ for small carrier density may hint at an unconventional pairing mechanism beyond the ordinary phonon-mediated pairing. In addition, zero-field $mu$SR did not provide evidence of broken time-reversal symmetry in the superconducting state. These features are consistent with the theoretically proposed topological superconducting state in Sr$_{3-x}$SnO, as well as with $s$-wave superconductivity.
We have performed $^{119}$Sn-NMR measurements on the antiperovskite oxide superconductor Sr$_{3-x}$SnO to investigate how its normal state changes with the Sr deficiency. A two-peak structure was observed in the NMR spectra of all the measured samples. This suggests that the phase separation tends to occur between the nearly stoichiometric and heavily Sr-deficient Sr$_{3-x}$SnO phases. The measurement of the nuclear spin-lattice relaxation rate $1/T_1$ indicates that the Sr-deficient phase shows a conventional metallic behavior due to the heavy hole doping. In contrast, the nearly stoichiometric phase exhibits unusual temperature dependence of $1/T_1$, attributable to the presence of a Dirac-electron band.
To clarify how the electronic state of Sr1-xLaxRuO3 evolves with La doping, we conducted photoemission (PES) experiments using soft x-rays. The spectral shape of the Ru 4d derived peak near the Fermi level changes significantly with increasing x. This variation indicates that a spectral weight transfer from the coherent to incoherent component occurs due to an enhancement of the electron correlation effect. Resonant PES experiments at the La 3d_{5/2} edge have confirmed that there is no significant contribution of the La 5d state in the energy range where the spectral weight transfer is observed. Using the dependence of the photoelectron mean free path on the photon energy, we subtracted the surface components from the PES spectra and confirmed that the enhancement of the electron correlation effect with La doping is an intrinsic bulk phenomenon. On the other hand, a large portion of the coherent component remains at the Fermi level up to x = 0.5, reflecting that the Ru 4d state still has itinerant characteristics. Moreover, we found that the PES spectra hardly depend on the temperature and do not exhibit a discernible change with magnetic ordering, suggesting that the temperature variation of the exchange splitting does not follow the prediction of the Stoner theory. The presently obtained experimental results indicate that the electron correlation effect plays an important role in Sr1-xLaxRuO3 and that the Ru 4d electrons possess both local and itinerant characteristics.
In Dirac semimetals, inter-band mixing has been known theoretically to give rise to a giant orbital diamagnetism when the Fermi level is close to the Dirac point. In Bi$ _{1-x}$Sb$ _x$ and other Dirac semimetals, an enhanced diamagnetism in the magnetic susceptibility $chi$ has been observed and interpreted as a manifestation of such giant orbital diamagnetism. Experimentally proving their orbital origin, however, has remained challenging. Cubic antiperovskite Sr$ _3$PbO is a three-dimensional Dirac electron system and shows the giant diamagnetism in $chi$ as in the other Dirac semimetals. $ ^{207}$Pb NMR measurements are conducted in this study to explore the microscopic origin of diamagnetism. From the analysis of the Knight shift $K$ as a function of $chi$ and the relaxation rate $T_1^{-1}$ for samples with different hole densities, the spin and the orbital components in $K$ are successfully separated. The results establish that the enhanced diamagnetism in Sr$ _3$PbO originates from the orbital contribution of Dirac electrons, which is fully consistent with the theory of giant orbital diamagnetism.
157 - Atsutoshi Ikeda 2019
We report the temperature variation of the $^{119}$Sn-M{o}ssbauer spectra of the antiperovskite (inverse perovskite) oxide superconductor Sr$_{3-x}$SnO. Both superconductive (Sr-deficient) and non-superconductive (nearly stoichiometric) samples exhibit major $gamma$-ray absorption with isomer shift similar to that of Mg$_2$Sn. This fact shows that Sr$_{3-x}$SnO contains the metallic anion Sn$^{4-}$, which is rare especially among oxides. In both samples, we observed another $gamma$-ray absorption with a larger isomer shift, indicating that there is another ionic state of Sn with a higher oxidation number. The temperature dependence of the absorption intensities reveals that the Sn ions exhibiting larger isomer shifts have a lower energy of the local vibration. The larger isomer shift and lower vibration energy are consistent with the values estimated from the first-principles calculations for hypothetical structures with various Sr-deficiency arrangements. Therefore, we conclude that the additional $gamma$-ray absorptions originate from the Sn atoms neighboring the Sr deficiency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا