No Arabic abstract
To clarify how the electronic state of Sr1-xLaxRuO3 evolves with La doping, we conducted photoemission (PES) experiments using soft x-rays. The spectral shape of the Ru 4d derived peak near the Fermi level changes significantly with increasing x. This variation indicates that a spectral weight transfer from the coherent to incoherent component occurs due to an enhancement of the electron correlation effect. Resonant PES experiments at the La 3d_{5/2} edge have confirmed that there is no significant contribution of the La 5d state in the energy range where the spectral weight transfer is observed. Using the dependence of the photoelectron mean free path on the photon energy, we subtracted the surface components from the PES spectra and confirmed that the enhancement of the electron correlation effect with La doping is an intrinsic bulk phenomenon. On the other hand, a large portion of the coherent component remains at the Fermi level up to x = 0.5, reflecting that the Ru 4d state still has itinerant characteristics. Moreover, we found that the PES spectra hardly depend on the temperature and do not exhibit a discernible change with magnetic ordering, suggesting that the temperature variation of the exchange splitting does not follow the prediction of the Stoner theory. The presently obtained experimental results indicate that the electron correlation effect plays an important role in Sr1-xLaxRuO3 and that the Ru 4d electrons possess both local and itinerant characteristics.
We have performed an angle-resolved photoemission spectroscopy study of La$_{0.6}$Sr$_{0.4}$FeO$_3$ using {it in situ} prepared thin films and determined its band structure. The experimental band dispersions could be well explained by an empirical band structure assuming the G-type antiferromagnetic state. However, the Fe 3d bands were found to be shifted downward relative to the Fermi level ($E_F$) by $sim 1$ eV compared with the calculation and to form a (pseudo)gap of $sim 1$ eV at $E_F$. We attribute this observation to a strong localization effect of doped holes due to polaron formation.
We have studied the electronic structure of epitaxially grown thin films of La$_{1-x}$Sr$_x$FeO$_3$ by {it in-situ} photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS) measurements. The Fe 2$p$ and valence-band PES spectra and the O $1s$ XAS spectra of LaFeO$_3$ have been successfully reproduced by configuration-interaction cluster-model calculation and, except for the satellite structure, by band-structure calculation.From the shift of the binding energies of core levels, the chemical potential was found to be shifted downward as $x$ was increased. Among the three peaks in the valence-band spectra of La$_{1-x}$Sr$_x$FeO$_3$, the peak nearest to the Fermi level ($E_F$), due to the ``$e_{g}$ band, was found to move toward $E_F$ and became weaker as $x$ was increased, whereas the intensity of the peak just above $E_F$ in the O $1s$ XAS spectra increased with $x$. The gap or pseudogap at $E_F$ was seen for all values of $x$. These results indicate that changes in the spectral line shape around $E_F$ are dominated by spectral weight transfer from below to above $E_F$ across the gap and are therefore highly non-rigid-band-like.
We have investigated the electronic structure of electron-doped Sr$_{2-x}$La$_x$FeMoO$_6$ ($x$=0.0 and 0.2) by photoemission spectroscopy and band-structure calculations within the local-density approximation+$U$ (LDA+$U$) scheme. A characteristic double-peak feature near the Fermi level ($E_{rm F}$) has been observed in the valence-band photoemission spectra of both $x$=0.0 and 0.2 samples. A photon-energy dependence of the spectra in the Mo 4$d$ Cooper minimum region compared with the band-structure calculations has shown that the first peak crossing $E_{rm F}$ consists of the (Fe+Mo) $t_{2gdownarrow}$ states (feature A) and the second peak well below $E_{rm F}$ is dominated by the Fe $e_{guparrow}$ states (feature B). Upon La substitution, the feature A moves away from $E_{rm F}$ by $sim$50 meV which is smaller than the prediction of our band theory, 112 meV. In addition, an intensity enhancement of $both$ A and B has been observed, although B is not crossing $E_{rm F}$. Those two facts are apparently incompatible with the simple rigid-band shift due to electron doping. We point out that such phenomena can be understood in terms of the strong Hunds rule energy stabilization in the 3$d^5$ configuration at the Fe sites in this compound. From an observed band-narrowing, we have also deduced a mass enhancement of $sim$2.5 with respect to the band theory, in good agreement with a specific heat measurement.
Using hard x-ray (HX ; $h u$ = 5.95 keV) synchrotron photoemission spectroscopy (PES), we study the intrinsic electronic structure of La$_{1-x}$Sr$_x$MnO$_3$ (LSMO) thin films. Comparison of Mn 2$p$ core-levels with Soft x-ray (SX ; $h u$ $sim$ 1000 eV) -PES shows a clear additional well-screened feature only in HX-PES. Take-off-angle dependent data indicate its bulk ($ge$ 20 {AA}) character. The doping and temperature dependence track the ferromagnetism and metallicity of the LSMO series. Cluster model calculations including charge transfer from doping induced states show good agreement, confirming this picture of bulk properties reflected in Mn 2$p$ core-levels using HX-PES.
We report on Raman scattering measurements of single crystalline La$_{1-x}$Sr$_x$MnO$_3$ ($x$=0, 0.06, 0.09 and 0.125), focusing on the high frequency regime. We observe multi-phonon scattering processes up to fourth-order which show distinct features: (i) anomalies in peak energy and its relative intensity and (ii) a pronounced temperature-, polarization-, and doping-dependence. These features suggest a mixed orbiton-phonon nature of the observed multi-phonon Raman spectra.