No Arabic abstract
Symmetries are well known to have had a profound role in our understanding of nature and are a critical design concept for the realization of advanced technologies. In fact, many symmetry-broken states associated with different phases of matter appear in a variety of quantum technology applications. Such symmetries are normally broken in spatial dimension, however they can also be broken temporally leading to the concept of discrete time symmetries and their associated crystals. Discrete time crystals (DTCs) are a novel state of matter emerging in periodically-driven quantum systems. Typically, they have been investigated assuming individual control operations with uniform rotation errors across the entire system. In this work we explore a new paradigm arising from non-uniform rotation errors, where two dramatically different phases of matter coexist in well defined regions of space. We consider a quantum spin network possessing long-range interactions where different driving operations act on different regions of that network. What results from its inherent symmetries is a system where one region is a DTC, while the second is ferromagnetic. We envision our work to open a new avenue of research on Chimera-like phases of matter where two different phases coexist in space.
The control of many-body quantum dynamics in complex systems is a key challenge in the quest to reliably produce and manipulate large-scale quantum entangled states. Recently, quench experiments in Rydberg atom arrays (Bluvstein et. al., arXiv:2012.12276) demonstrated that coherent revivals associated with quantum many-body scars can be stabilized by periodic driving, generating stable subharmonic responses over a wide parameter regime. We analyze a simple, related model where these phenomena originate from spatiotemporal ordering in an effective Floquet unitary, corresponding to discrete time-crystalline (DTC) behavior in a prethermal regime. Unlike conventional DTC, the subharmonic response exists only for Neel-like initial states, associated with quantum scars. We predict robustness to perturbations and identify emergent timescales that could be observed in future experiments. Our results suggest a route to controlling entanglement in interacting quantum systems by combining periodic driving with many-body scars.
A quantum phase of matter can be understood from the symmetry of the systems Hamiltonian. The system symmetry along the time axis has been proposed to show a new phase of matter referred as discrete-time crystals (DTCs). A DTC is a quantum phase of matter in non-equilibrium systems, and it is also intimately related to the symmetry of the initial state. DTCs that are stable in isolated systems are not necessarily resilient to the influence from the external reservoir. In this paper, we discuss the dynamics of the DTCs under the influence of an environment. Specifically, we consider a non-trivial situation in which the initial state is prepared to partly preserve the symmetry of the Liouvillian. Our analysis shows that the entire system evolves towards a DTC phase and is stabilised by the effect of dephasing. Our results provide a new understanding of quantum phases emerging from the competition between the coherent and incoherent dynamics in dissipative non-equilibrium quantum systems.
We investigate thermalization dynamics of a driven dipolar many-body quantum system through the stability of discrete time crystalline order. Using periodic driving of electronic spin impurities in diamond, we realize different types of interactions between spins and demonstrate experimentally that the interplay of disorder, driving and interactions leads to several qualitatively distinct regimes of thermalization. For short driving periods, the observed dynamics are well described by an effective Hamiltonian which sensitively depends on interaction details. For long driving periods, the system becomes susceptible to energy exchange with the driving field and eventually enters a universal thermalizing regime, where the dynamics can be described by interaction-induced dephasing of individual spins. Our analysis reveals important differences between thermalization of long-range Ising and other dipolar spin models.
Quantum many-body systems display rich phase structure in their low-temperature equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC). Concretely, dynamical phases can be defined in periodically driven many-body localized systems via the concept of eigenstate order. In eigenstate-ordered phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, wherein few select states can mask typical behavior. Here we implement a continuous family of tunable CPHASE gates on an array of superconducting qubits to experimentally observe an eigenstate-ordered DTC. We demonstrate the characteristic spatiotemporal response of a DTC for generic initial states. Our work employs a time-reversal protocol that discriminates external decoherence from intrinsic thermalization, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. In addition, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
Classical chimera states are paradigmatic examples of partial synchronization patterns emerging in nonlinear dynamics. These states are characterized by the spatial coexistence of two dramatically different dynamical behaviors, i.e., synchronized and desynchronized dynamics. Our aim in this contribution is to discuss signatures of chimera states in quantum mechanics. We study a network with a ring topology consisting of N coupled quantum Van der Pol oscillators. We describe the emergence of chimera-like quantum correlations in the covariance matrix. Further, we establish the connection of chimera states to quantum information theory by describing the quantum mutual information for a bipartite state of the network.