Do you want to publish a course? Click here

Production of ultra-low radioactivity NaI(Tl) crystals for Dark Matter detectors

97   0   0.0 ( 0 )
 Added by Ioan Dafinei
 Publication date 2019
  fields Physics
and research's language is English
 Authors Y. Zhu




Ask ChatGPT about the research

Scintillating NaI(Tl) crystals are widely used in a large variety of experimental applications. However, for the use as Dark Matter (DM) detectors, such crystals demand a high level of radio-purity, not achievable by means of standard industrial techniques. One of the main difficulties comes from the presence of potassium that always accompanies sodium in alkali halides. On the other hand, the arguable DM detection by DAMA experiment using NaI(Tl) scintillating crystals requires a reliable verification able to either confirm the existence of DM or rule out the DAMA claim. Ultra-low radioactivity NaI(Tl) crystals, particularly with very low potassium content, are therefore indispensable to overcome the current stalemate in Dark Matter searches. Nonetheless, apart from DAMA-LIBRA experiments, to date, no other experiment has succeeded in building a detector from NaI(Tl) crystals with potassium content of ppb level. This work describes recent results in the preparation of ultra-radio-pure NaI(Tl) crystals using a modified Bridgman method. A double-walled platinum crucible technique has been designed and reliability tests show that 5 ppb of potassium in the NaI(Tl) crystals of 2 and 3 inches in diameter can be achieved starting from NaI powder with potassium content of the order of 10 ppb. The potassium excess is segregated in the tail-side of the as grown ingot where measured potassium concentration is above 20 ppb. The purifying effect of Bridgman growth for larger NaI(Tl) crystals is currently being tested. The work also reports on scintillation parameters of our NaI(Tl) crystals measured in a dedicated setup conceived for naked, hygroscopic crystals. The reproducible and reliable production of ultra-low radioactivity NaI(Tl) crystals reported in this work will hopefully spur the construction of new DM search experiments and, anyway, clarify the controversial DAMA-LIBRA results.



rate research

Read More

182 - K.Fushimi , D.Chernyak , H.Ejiri 2017
The dark matter search project by means of ultra high purity NaI(Tl) scintillator is now underdevelopment. An array of large volume NaI(Tl) detectors whose volume is 12.7 cm$phitimes$12.7 cm is applied to search for dark matter signal. To remove radioactive impurities in NaI(Tl) crystal is one of the most important task to find small number of dark matter signals. We have developed high purity NaI(Tl) crystal which contains small amounts of radioactive impurities, $<4$ ppb of $^{nat}$K, 0.3 ppt of Th chain, 58 $mu$Bq/kg of $^{226}$Ra and 30 $mu$Bq/kg of $^{210}$Pb. Future prospects to search for dark matter by means of a large volume and high purity NaI(Tl) scintillator is discussed.
410 - B.J. Park , J.J. Choe , J.S. Choi 2020
The annual modulation signal observed by the DAMA experiment is a long-standing question in the community of dark matter direct detection. This necessitates an independent verification of its existence using the same detection technique. The COSINE-100 experiment has been operating with 106~kg of low-background NaI(Tl) detectors providing interesting checks on the DAMA signal. However, due to higher backgrounds in the NaI(Tl) crystals used in COSINE-100 relative to those used for DAMA, it was difficult to reach final conclusions. Since the start of COSINE-100 data taking in 2016, we also have initiated a program to develop ultra-pure NaI(Tl) crystals for COSINE-200, the next phase of the experiment. The program includes efforts of raw powder purification, ultra-pure NaI(Tl) crystal growth, and detector assembly techniques. After extensive research and development of NaI(Tl) crystal growth, we have successfully grown a few small-size (0.61$-$0.78 kg) thallium-doped crystals with high radio-purity. A high light yield has been achieved by improvements of our detector assembly technique. Here we report the ultra-pure NaI(Tl) detector developments at the Institute for Basic Science, Korea. The technique developed here will be applied to the production of NaI(Tl) detectors for the COSINE-200 experiment.
A dark matter search project needs and extremely low background radiation detector since the expected event rate of dark matter is less than a few events in one year in one tonne of the detector mass. The authors developed a highly radiopure NaI(Tl) crystal to search for dark matter. The best combination of the purification methods was developed, resulting $^{mathrm{nat}}$K and $^{210}$Pb were less than 20 ppb and 5.7 $mu$Bq/kg, respectively. The authors will construct a large volume detector system with high-purity NaI(Tl) crystals. The design and the performance of the prototype detector module will be reported in this article.
The highly radiopure NaI(Tl) was developed to search for particle candidates of dark matter. The optimized methods were combined to reduce various radioactive impurities. The $^{40}$K was effectively reduced by the re-crystallization method. The progenies of the decay chains of uranium and thorium were reduced by appropriate resins. The concentration of natural potassium in NaI(Tl) crystal was reduced down to 20 ppb. Concentrations of alpha-ray emitters were successfully reduced by appropriate selection of resin. The present concentration of thorium series and 226Ra were $1.2 pm1.4$ $mu$Bq/kg and $13pm4$ $mu$Bq/kg, respectively. No significant excess in the concentration of $^{210}$Pb was obtained, and the upper limit was 5.7 $mu$Bq/kg at 90% C. L. The achieved level of radiopurity of NaI(Tl) crystals makes construction of a dark matter detector possible.
69 - H.J.Kim , H.J.Ahn , S.K.Kim 1999
Searches for weakly interacting massive particles(WIMP) can be based on the dete ction of nuclear recoil energy in CsI(Tl) crystals. We demonstrate that low energy gamma rays down to few keV is detected with CsI(Tl) crystal detector. A clear peak at 6 keV is observed using X-ray source. Good energy resolution and linearity have been achieved down to X-ray region. In addition, we also show that alpha particles and gamma rays can be clearly separated using the different time characteristics of the crystal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا