Do you want to publish a course? Click here

Dark matter search with high purity NaI(Tl) scintillator

108   0   0.0 ( 0 )
 Added by Ken-Ichi Fushimi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A dark matter search project needs and extremely low background radiation detector since the expected event rate of dark matter is less than a few events in one year in one tonne of the detector mass. The authors developed a highly radiopure NaI(Tl) crystal to search for dark matter. The best combination of the purification methods was developed, resulting $^{mathrm{nat}}$K and $^{210}$Pb were less than 20 ppb and 5.7 $mu$Bq/kg, respectively. The authors will construct a large volume detector system with high-purity NaI(Tl) crystals. The design and the performance of the prototype detector module will be reported in this article.



rate research

Read More

182 - K.Fushimi , D.Chernyak , H.Ejiri 2017
The dark matter search project by means of ultra high purity NaI(Tl) scintillator is now underdevelopment. An array of large volume NaI(Tl) detectors whose volume is 12.7 cm$phitimes$12.7 cm is applied to search for dark matter signal. To remove radioactive impurities in NaI(Tl) crystal is one of the most important task to find small number of dark matter signals. We have developed high purity NaI(Tl) crystal which contains small amounts of radioactive impurities, $<4$ ppb of $^{nat}$K, 0.3 ppt of Th chain, 58 $mu$Bq/kg of $^{226}$Ra and 30 $mu$Bq/kg of $^{210}$Pb. Future prospects to search for dark matter by means of a large volume and high purity NaI(Tl) scintillator is discussed.
A high purity and large volume NaI(Tl) scintillator was developed to search for cosmic dark matter. The required densities of radioactive impurities (RIs) such as U-chain, Th-chain are less than a few ppt to establish high sensitivity to dark matter. The impurity of RIs were effectively reduced by selecting raw materials of crucible and by performing chemical reduction of lead ion in NaI raw powder. The impurity of $^{226}$Ra was reduced less than 100 $mu$Bq/kg in NaI(Tl) crystal. It should be remarked that the impurity of $^{210}$Pb, which is difficult to reduce, is effectively reduced by chemical processing of NaI raw powder down to less than 30 $mu$Bq/kg. The expected sensitivity to cosmic dark matter by using 250 kg of the high purity and large volume NaI(Tl) scintillator (PICO-LON; Pure Inorganic Crystal Observatory for LOw-background Neutr(al)ino) is 7$times$10$^{-45}$ cm$^{2}$ for 50 GeV$/c^{2}$ WIMPs.
The highly radiopure NaI(Tl) was developed to search for particle candidates of dark matter. The optimized methods were combined to reduce various radioactive impurities. The $^{40}$K was effectively reduced by the re-crystallization method. The progenies of the decay chains of uranium and thorium were reduced by appropriate resins. The concentration of natural potassium in NaI(Tl) crystal was reduced down to 20 ppb. Concentrations of alpha-ray emitters were successfully reduced by appropriate selection of resin. The present concentration of thorium series and 226Ra were $1.2 pm1.4$ $mu$Bq/kg and $13pm4$ $mu$Bq/kg, respectively. No significant excess in the concentration of $^{210}$Pb was obtained, and the upper limit was 5.7 $mu$Bq/kg at 90% C. L. The achieved level of radiopurity of NaI(Tl) crystals makes construction of a dark matter detector possible.
We present new results on the radiopurity of a 3.4-kg NaI(Tl) crystal scintillator operated in the SABRE proof-of-principle detector setup. The amount of potassium contamination, determined by the direct counting of radioactive $^{40}$K, is found to be $2.2pm1.5$ ppb, lowest ever achieved for NaI(Tl) crystals. With the active veto, the average background rate in the crystal in the 1-6 keV energy region-of-interest (ROI) is $1.20pm0.05$ counts/day/kg/keV, which is a breakthrough since the DAMA/LIBRA experiment. Our background model indicates that the rate is dominated by $^{210}$Pb and that about half of this contamination is located in the PTFE reflector. We discuss ongoing developments of the crystal manufacture aimed at the further reduction of the background, including data from purification by zone refining. A projected background rate lower than $sim$0.2 counts/day/kg/keV in the ROI is within reach. These results represent a benchmark for the development of next-generation NaI(Tl) detector arrays for the direct detection of dark matter particles.
We present the first search for a dark matter annual modulation signal in the Southern Hemisphere conducted with NaI(Tl) detectors, performed by the DM-Ice17 experiment. Nuclear recoils from dark matter interactions are expected to yield an annually modulated signal independent of location within the Earths hemispheres. DM-Ice17, the first step in the DM-Ice experimental program, consists of 17 kg of NaI(Tl) located at the South Pole under 2200 m.w.e. overburden of Antarctic glacial ice. Taken over 3.6 years for a total exposure of 60.8 kg yr, DM-Ice17 data are consistent with no modulation in the energy range of 4-20 keV, providing the strongest limits on weakly interacting massive particle dark matter from a direct detection experiment located in the Southern Hemisphere. The successful deployment and stable long-term operation of DM-Ice17 establishes the South Pole ice as a viable location for future dark matter searches and in particular for a high-sensitivity NaI(Tl) dark matter experiment to directly test the DAMA/LIBRA claim of the observation of dark matter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا