Do you want to publish a course? Click here

Phonon Scattering at Kinks in Suspended Graphene

249   0   0.0 ( 0 )
 Added by Robin Dolleman
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent experiments have shown surprisingly large thermal time constants in suspended graphene ranging from 10 to 100 ns in drums with a diameter ranging from 2 to 7 microns. The large time constants and their scaling with diameter points towards a thermal resistance at the edge of the drum. However, an explanation of the microscopic origin of this resistance is lacking. Here, we show how phonon scattering at a kink in the graphene, e.g. formed by sidewall adhesion at the edge of the suspended membrane, can cause a large thermal time constant. This kink strongly limits the fraction of flexural phonons that cross the suspended graphene edge, which causes a thermal interface resistance at its boundary. Our model predicts thermal time constants that are of the same order of magnitude as experimental data, and shows a similar dependence on the circumference. Furthermore, the model predicts the relative in-plane and out-of-plane phonon contributions to graphenes thermal expansion force, in agreement with experiments. We thus show, that in contrast to conventional thermal (Kapitza) resistance which occurs between two different materials, in 2D materials another type of thermal interface resistance can be geometrically induced in a single material.



rate research

Read More

We report the first temperature dependent phonon transport measurements in suspended Cu-CVD single layer graphene (SLG) from 15K to 380K using microfabricated suspended devices. The thermal conductance per unit cross section $sigma$/A increases with temperature and exhibits a peak near T~280K ($pm$10K) due to the Umklapp process. At low temperatures (T<140K), the temperature dependent thermal conductivity scales as ~T^{1.5}, suggesting that the main contribution to thermal conductance arises from flexural acoustic (ZA) phonons in suspended SLG. The $sigma$/A reaches a high value of 1.7$times10^5 T^{1.5}$ W/m^2K, which is approaching the expected ballistic phonon thermal conductance for two-dimensional graphene sheets. Our results not only clarify the ambiguity in the thermal conductance, but also demonstrate the potential of Cu-CVD graphene for heat related applications.
Using electrical transport experiments and shot noise thermometry, we investigate electron-phonon heat transfer rate in a suspended bilayer graphene. Contrary to monolayer graphene with heat flow via three-body supercollision scattering, we find that regular electron - optical phonon scattering in bilayer graphene provides the dominant scattering process at electron energies $ gtrsim 0.15$ eV. We determine the strength of these intrinsic heat flow processes of bilayer graphene and find good agreement with theoretical estimates when both zone edge and zone center optical phonons are taken into account.
Using electrical transport experiments and shot noise thermometry, we find strong evidence that supercollision scattering processes by flexural modes are the dominant electron-phonon energy transfer mechanism in high-quality, suspended graphene around room temperature. The power law dependence of the electron-phonon coupling changes from cubic to quintic with temperature. The change of the temperature exponent by two is reflected in the quadratic dependence on chemical potential, which is an inherent feature of two-phonon quantum processes.
Angle-resolved photoemission spectroscopy reveals pronounced kinks in the dispersion of the sigma band of graphene. Such kinks are usually caused by the combination of a strong electron-boson interaction and the cut-off in the Fermi-Dirac distribution. They are therefore not expected for the $sigma$ band of graphene that has a binding energy of more than 3.5 eV. We argue that the observed kinks are indeed caused by the electron-phonon interaction, but the role of the Fermi-Dirac distribution cutoff is assumed by a cut-off in the density of $sigma$ states. The existence of the effect suggests a very weak coupling of holes in the $sigma$ band not only to the $pi$ electrons of graphene but also to the substrate electronic states. This is confirmed by the presence of such kinks for graphene on several different substrates that all show a strong coupling constant of lambda=1.
We make use of micro-magneto Raman scattering spectroscopy to probe magneto-phonon resonances (MPR) in suspended mono- to penta-layer graphene. MPR correspond to avoided crossings between zone-center optical phonons (G-mode) and optically-active inter Landau level (LL) transitions and provide a tool to perform LL spectroscopy at a fixed energy ($approx 197~rm{meV}$) set by the G-mode phonon. Using a single-particle effective bilayer model, we readily extract the velocity parameter associated with each MPR. A single velocity parameter slightly above the bulk graphite value suffices to fit all MPR for $Ngeq2$ layer systems. In contrast, in monolayer graphene, we find that the velocity parameter increases significantly from $(1.23pm 0.01) times 10^6~mathrm{m.s^{-1}}$ up to $(1.45pm0.02) times 10^6~mathrm{m.s^{-1}}$ as the first to third optically-active inter LL transition couple to the G-mode phonon. This result is understood as a signature of enhanced many-body effects in unscreened graphene.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا