No Arabic abstract
Using $0.2^{prime prime}$ ($sim3$ pc) ALMA images of vibrationally excited HC$_3$N emission (HC$_3$N$^*$) we reveal the presence of $8$ unresolved Super Hot Cores (SHCs) in the inner $160$ pc of NGC,253. Our LTE and non-LTE modelling of the HC$_3$N$^*$ emission indicate that SHCs have dust temperatures of $200-375$ K, relatively high H$_2$ densities of $1-6times 10^{6}$ cm$^{-3}$ and high IR luminosities of $0.1-1times 10^8$ L$_odot$. As expected from their short lived phase ($sim 10^4$ yr), all SHCs are associated with young Super Star Clusters (SSCs). We use the ratio of luminosities form the SHCs (protostar phase) and from the free-free emission (ZAMS star phase), to establish the evolutionary stage of the SSCs. The youngest SSCs, with the larges ratios, have ages of a few $10^4$ yr (proto-SSCs) and the more evolved SSCs are likely between $10^5$ and $10^6$ yr (ZAMS-SSCs). The different evolutionary stages of the SSCs are also supported by the radiative feedback from the UV radiation as traced by the HNCO/CS ratio, with this ratio being systematically higher in the young proto-SSCs than in the older ZAMS-SSCs. We also estimate the SFR and the SFE of the SSCs. The trend found in the estimated SFE ($sim40%$ for proto-SSCs and $>85%$ for ZAMS-SSCs) and in the gas mass reservoir available for star formation, one order of magnitude higher for proto-SSCs, suggests that star formation is still going on in proto-SSCs. We also find that the most evolved SSCs are located, in projection, closer to the center of the galaxy than the younger proto-SSCs, indicating an inside-out SSC formation scenario.
NGC 253 hosts the nearest nuclear starburst. Previous observations show a region rich in molecular gas, with dense clouds associated with recent star formation. We used ALMA to image the 350 GHz dust continuum and molecular line emission from this region at 2 pc resolution. Our observations reveal ~14 bright, compact (~2-3 pc FWHM) knots of dust emission. Most of these sources are likely to be forming super star clusters (SSCs) based on their inferred dynamical and gas masses, association with 36 GHz radio continuum emission, and coincidence with line emission tracing dense, excited gas. One source coincides with a known SSC, but the rest remain invisible in Hubble near-infrared (IR) imaging. Our observations imply that gas still constitutes a large fraction of the overall mass in these sources. Their high brightness temperature at 350 GHz also implies a large optical depth near the peak of the IR spectral energy distribution. As a result, these sources may have large IR photospheres and the IR radiation force likely exceeds L/c. Still, their moderate observed velocity dispersions suggest that feedback from radiation, winds, and supernovae are not yet disrupting most sources. This mode of star formation appears to produce a large fraction of stars in the burst. We argue for a scenario in which this phase lasts ~1 Myr, after which the clusters shed their natal cocoons but continue to produce ionizing photons. The strong feedback that drives the observed cold gas and X-ray outflows likely occurs after the clusters emerge from this early phase.
We present submillimeter spectra of the (proto-)super star cluster (SSC) candidates in the starbursting center of the nearby galaxy NGC 253 identified by Leroy et al. (2018). The 2.5pc resolution of our ALMA cycle 3 observations approach the size of the SSCs and allows the study of physical and chemical properties of the molecular gas in these sources. In the 14 SSC sources and in the frequency ranges 342.0-345.8 GHz and 353.9-357.7 GHz we detect 55 lines belonging to 19 different chemical species. The SSCs differ significantly in chemical complexity, with the richest clusters showing 19 species and the least complex showing 4 species. We detect HCN isotopologues and isomers (H$^{13}$CN, HC$^{15}$N, H$^{15}$NC), abundant HC$_3$N, SO and S$^{18}$O, SO$_2$, and H$_2$CS. The gas ratios CO/HCN, CO/HCO$^+$ are low, ~1-10, implying high dense gas fractions in the SSCs. Line ratio analyses suggests chemistry consistent with photon-dominated regions and mechanical heating. None of the SSCs near the galaxy center show line ratios that imply an X-ray dominated region, suggesting that heating by any (still unknown) AGN does not play a major role. The gas temperatures are high in most sources, with an average rotational temperature of ~130 K in SO$_2$. The widespread existence of vibrationally excited HCN and HC$_3$N transitions implies strong IR radiation fields, potentially trapped by a greenhouse effect due to high continuum opacities.
We study the spectrophotometric properties of a highly magnified (mu~40-70) pair of stellar systems identified at z=3.2222 behind the Hubble Frontier Field galaxy cluster MACS~J0416. Five multiple images (out of six) have been spectroscopically confirmed by means of VLT/MUSE and VLT/X-Shooter observations. Each image includes two faint (m_uv~30.6), young (<100 Myr), low-mass (<10^7 Msun), low-metallicity (12+Log(O/H)~7.7, or 1/10 solar) and compact (30 pc effective radius) stellar systems separated by ~300pc, after correcting for lensing amplification. We measured several rest-frame ultraviolet and optical narrow (sigma_v <~ 25 km/s) high-ionization lines. These features may be the signature of very hot (T>50000 K) stars within dense stellar clusters, whose dynamical mass is likely dominated by the stellar component. Remarkably, the ultraviolet metal lines are not accompanied by Lya emission (e.g., CIV / Lya > 15), despite the fact that the Lya line flux is expected to be 150 times brighter (inferred from the Hbeta flux). A spatially-offset, strongly-magnified (mu>50) Lya emission with a spatial extent <~7.6 kpc^2 is instead identified 2 kpc away from the system. The origin of such a faint emission can be the result of fluorescent Lya induced by a transverse leakage of ionizing radiation emerging from the stellar systems and/or can be associated to an underlying and barely detected object (with m_uv > 34 de-lensed). This is the first confirmed metal-line emitter at such low-luminosity and redshift without Lya emission, suggesting that, at least in some cases, a non-uniform covering factor of the neutral gas might hamper the Lya detection.
NGC 4945 is a nearby (3.8 Mpc) galaxy hosting a nuclear starburst and Seyfert Type 2 AGN. We use the Atacama Large Millimeter/submillimeter Array (ALMA) to image the 93 GHz (3.2 mm) free-free continuum and hydrogen recombination line emission (H40$alpha$ and H42$alpha$) at 2.2 pc (0.12) resolution. Our observations reveal 27 bright, compact sources with FWHM sizes of 1.4 - 4.0 pc, which we identify as candidate super star clusters. Recombination line emission, tracing the ionizing photon rate of the candidate clusters, is detected in 15 sources, 6 of which have a significant synchrotron component to the 93 GHz continuum. Adopting an age of ~5 Myr, the stellar masses implied by the ionizing photon luminosities are $log_{10}$($M_{star}$/M$_{odot}$) $approx$ 4.7 - 6.1. We fit a slope to the cluster mass distribution and find $beta = -1.8 pm 0.4$. The gas masses associated with these clusters, derived from the dust continuum at 350 GHz, are typically an order of magnitude lower than the stellar mass. These candidate clusters appear to have already converted a large fraction of their dense natal material into stars and, given their small free-fall times of ~0.05 Myr, are surviving an early volatile phase. We identify a point-like source in 93 GHz continuum emission which is presumed to be the AGN. We do not detect recombination line emission from the AGN and place an upper limit on the ionizing photons which leak into the starburst region of $Q_0 < 10^{52}$ s$^{-1}$.
We present observations of a massive star cluster near the nuclear region of the nearby starburst galaxy NGC 253. The peak of near-infrared emission, which is spatially separated by 4 from the kinematic center of the galaxy, is coincident with a super star cluster whose properties we examine with low-resolution (R ~ 1,200) infrared CTIO spectroscopy and optical/near-infrared HST imaging. Extinction, measured from [FeII] lines, is estimated at Av = 17.7 +/- 2.6. The age of the cluster is estimated at 5.7 Myr, based on Bry equivalent width for an instantaneous burst using Starburst99 modeling. However, a complex star formation history is inferred from the presence of both recombination emission and photospheric CO absorption. The ionizing photon flux has a lower limit of 7.3 +/- 2.5 x 10^53 inverse seconds, corrected for extinction. Assuming a Kroupa IMF, we estimate a cluster mass of 1.4 +/- 0.4 x 10^7 solar masses. We observe a strong Wolf-Rayet signature at 2.06 microns and report a weak feature at 2.19 microns which may be due to a massive stellar population, consistent with the derived mass and age of this cluster.