Do you want to publish a course? Click here

Magnifying the early episodes of star formation: super star clusters at cosmological distances

105   0   0.0 ( 0 )
 Added by Eros Vanzella
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the spectrophotometric properties of a highly magnified (mu~40-70) pair of stellar systems identified at z=3.2222 behind the Hubble Frontier Field galaxy cluster MACS~J0416. Five multiple images (out of six) have been spectroscopically confirmed by means of VLT/MUSE and VLT/X-Shooter observations. Each image includes two faint (m_uv~30.6), young (<100 Myr), low-mass (<10^7 Msun), low-metallicity (12+Log(O/H)~7.7, or 1/10 solar) and compact (30 pc effective radius) stellar systems separated by ~300pc, after correcting for lensing amplification. We measured several rest-frame ultraviolet and optical narrow (sigma_v <~ 25 km/s) high-ionization lines. These features may be the signature of very hot (T>50000 K) stars within dense stellar clusters, whose dynamical mass is likely dominated by the stellar component. Remarkably, the ultraviolet metal lines are not accompanied by Lya emission (e.g., CIV / Lya > 15), despite the fact that the Lya line flux is expected to be 150 times brighter (inferred from the Hbeta flux). A spatially-offset, strongly-magnified (mu>50) Lya emission with a spatial extent <~7.6 kpc^2 is instead identified 2 kpc away from the system. The origin of such a faint emission can be the result of fluorescent Lya induced by a transverse leakage of ionizing radiation emerging from the stellar systems and/or can be associated to an underlying and barely detected object (with m_uv > 34 de-lensed). This is the first confirmed metal-line emitter at such low-luminosity and redshift without Lya emission, suggesting that, at least in some cases, a non-uniform covering factor of the neutral gas might hamper the Lya detection.



rate research

Read More

Using $0.2^{prime prime}$ ($sim3$ pc) ALMA images of vibrationally excited HC$_3$N emission (HC$_3$N$^*$) we reveal the presence of $8$ unresolved Super Hot Cores (SHCs) in the inner $160$ pc of NGC,253. Our LTE and non-LTE modelling of the HC$_3$N$^*$ emission indicate that SHCs have dust temperatures of $200-375$ K, relatively high H$_2$ densities of $1-6times 10^{6}$ cm$^{-3}$ and high IR luminosities of $0.1-1times 10^8$ L$_odot$. As expected from their short lived phase ($sim 10^4$ yr), all SHCs are associated with young Super Star Clusters (SSCs). We use the ratio of luminosities form the SHCs (protostar phase) and from the free-free emission (ZAMS star phase), to establish the evolutionary stage of the SSCs. The youngest SSCs, with the larges ratios, have ages of a few $10^4$ yr (proto-SSCs) and the more evolved SSCs are likely between $10^5$ and $10^6$ yr (ZAMS-SSCs). The different evolutionary stages of the SSCs are also supported by the radiative feedback from the UV radiation as traced by the HNCO/CS ratio, with this ratio being systematically higher in the young proto-SSCs than in the older ZAMS-SSCs. We also estimate the SFR and the SFE of the SSCs. The trend found in the estimated SFE ($sim40%$ for proto-SSCs and $>85%$ for ZAMS-SSCs) and in the gas mass reservoir available for star formation, one order of magnitude higher for proto-SSCs, suggests that star formation is still going on in proto-SSCs. We also find that the most evolved SSCs are located, in projection, closer to the center of the galaxy than the younger proto-SSCs, indicating an inside-out SSC formation scenario.
We present a new implementation of star formation in cosmological simulations, by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift, by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope is $alphaapprox 1.8-2$, while the cutoff at high mass scales with the star formation rate. A related trend is a positive correlation between the surface density of star formation rate and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. Comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.
161 - M. Gennaro 2012
We have started a campaign to identify massive star clusters inside bright molecular bubbles towards the Galactic Center. The CN15/16/17 molecular complex is the first example of our study. The region is characterized by the presence of two young clusters, DB10 and DB11, visible in the NIR, an ultra-compact HII region identified in the radio, several young stellar objects visible in the MIR, a bright diffuse nebulosity at 8mu m coming from PAHs and sub-mm continuum emission revealing the presence of cold dust. Given its position on the sky (l=0.58, b=-0.85) and its kinematic distance of ~7.5 kpc, the region was thought to be a very massive site of star formation in proximity of the CMZ. The cluster DB11 was estimated to be as massive as 10^4 M_sun. However the regions properties were known only through photometry and its kinematic distance was very uncertain given its location at the tangential point. We aimed at better characterizing the region and assess whether it could be a site of massive star formation located close to the Galactic Center. We have obtained NTT/SofI JHKs photometry and long slit K band spectroscopy of the brightest members. We have additionally collected data in the radio, sub-mm and mid infrared, resulting in a quite different picture of the region. We have confirmed the presence of massive early B type stars and have derived a spectro-photometric distance of ~1.2 kpc, much smaller than the kinematic distance. Adopting this distance we obtain clusters masses of M(DB10) ~ 170 M_sun and M(DB11) ~ 275 M_sun. This is consistent with the absence of any O star, confirmed by the excitation/ionization status of the nebula. No HeI diffuse emission is detected in our spectroscopic observations at 2.113mu m, which would be expected if the region was hosting more massive stars. Radio continuum measurements are also consistent with the region hosting at most early B stars.
Super Star Clusters (Mecl > 10^5 Msol) are the largest stellar nurseries in our local Universe, containing hundreds of thousands to millions of young stars within a few light years. Many of these systems are found in external galaxies, especially in pairs of interacting galaxies, and in some dwarf galaxies, but relatively few in disk galaxies like our own Milky Way. We show that a possible explanation for this difference is the presence of shear in normal spiral galaxies which impedes the formation of the very large and dense super star clusters but prefers the formation of loose OB associations possibly with a less massive cluster at the center. In contrast, in interacting galaxies and in dwarf galaxies, regions can collapse without having a large-scale sense of rotation. This lack of rotational support allows the giant clouds of gas and stars to concentrate into a single, dense and gravitationally bound system.
We explore how the estimated star formation rate (SFR) of a sample of isolated, massive dusty star-forming galaxies at early cosmic epochs ($1.5 < z < 3.5$) changes when their ultraviolet (UV) to near-infrared (NIR) spectral energy distribution is extended to longer wavelengths by adding far-infrared/sub-millimeter data to trace the reprocessed radiation from dust heated by young massive stars. We use large-area surveys with multi-wavelength datasets that include DECam UV-to-optical, VICS82 NIR, Spitzer-IRAC NIR, and Herschel-SPIRE far-infrared/sub-millimeter data. We find that the inclusion of far-infrared/sub-millimeter data leads to SFRs that span $sim$100-3500 $M_{odot} yr^{-1}$ and are higher than the extinction-corrected UV-based SFR by an average factor of $sim$3.5, and by a factor of over 10 in many individual galaxies. Our study demonstrates the importance of far-IR/sub-millimeter data for deriving accurate SFRs in massive dusty galaxies at early epochs, and underscores the need for next-generation far-IR/sub-millimeter facilities with high sensitivity, field of view, and angular resolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا