Do you want to publish a course? Click here

A Young Super Star Cluster in the Nuclear Region of NGC 253

223   0   0.0 ( 0 )
 Added by Katherine Kornei
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present observations of a massive star cluster near the nuclear region of the nearby starburst galaxy NGC 253. The peak of near-infrared emission, which is spatially separated by 4 from the kinematic center of the galaxy, is coincident with a super star cluster whose properties we examine with low-resolution (R ~ 1,200) infrared CTIO spectroscopy and optical/near-infrared HST imaging. Extinction, measured from [FeII] lines, is estimated at Av = 17.7 +/- 2.6. The age of the cluster is estimated at 5.7 Myr, based on Bry equivalent width for an instantaneous burst using Starburst99 modeling. However, a complex star formation history is inferred from the presence of both recombination emission and photospheric CO absorption. The ionizing photon flux has a lower limit of 7.3 +/- 2.5 x 10^53 inverse seconds, corrected for extinction. Assuming a Kroupa IMF, we estimate a cluster mass of 1.4 +/- 0.4 x 10^7 solar masses. We observe a strong Wolf-Rayet signature at 2.06 microns and report a weak feature at 2.19 microns which may be due to a massive stellar population, consistent with the derived mass and age of this cluster.



rate research

Read More

Early release science observations of the cluster NGC3603 with the WFC3 on the refurbished HST allow us to study its recent star formation history. Our analysis focuses on stars with Halpha excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with Halpha excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.
NGC 253 hosts the nearest nuclear starburst. Previous observations show a region rich in molecular gas, with dense clouds associated with recent star formation. We used ALMA to image the 350 GHz dust continuum and molecular line emission from this region at 2 pc resolution. Our observations reveal ~14 bright, compact (~2-3 pc FWHM) knots of dust emission. Most of these sources are likely to be forming super star clusters (SSCs) based on their inferred dynamical and gas masses, association with 36 GHz radio continuum emission, and coincidence with line emission tracing dense, excited gas. One source coincides with a known SSC, but the rest remain invisible in Hubble near-infrared (IR) imaging. Our observations imply that gas still constitutes a large fraction of the overall mass in these sources. Their high brightness temperature at 350 GHz also implies a large optical depth near the peak of the IR spectral energy distribution. As a result, these sources may have large IR photospheres and the IR radiation force likely exceeds L/c. Still, their moderate observed velocity dispersions suggest that feedback from radiation, winds, and supernovae are not yet disrupting most sources. This mode of star formation appears to produce a large fraction of stars in the burst. We argue for a scenario in which this phase lasts ~1 Myr, after which the clusters shed their natal cocoons but continue to produce ionizing photons. The strong feedback that drives the observed cold gas and X-ray outflows likely occurs after the clusters emerge from this early phase.
216 - A. Brunthaler 2009
We present high-resolution spectral line and continuum VLBI and VLA observations of the nuclear region of NGC 253 at 22 GHz. While the water vapor masers in this region were detected on arcsecond and milliarcsecond scales, we could not detect any compact continuum emission with a 5 sigma upper limit of ~ 1 mJy. The observations reveal that the water maser emission is not related to a possible low-luminosity active galactic nucleus but is almost certainly associated with star-formation activity. Not detecting any compact continuum source on milliarcsecond scales also questions the presence of a - previously assumed - active nucleus in NGC 253.
We present submillimeter spectra of the (proto-)super star cluster (SSC) candidates in the starbursting center of the nearby galaxy NGC 253 identified by Leroy et al. (2018). The 2.5pc resolution of our ALMA cycle 3 observations approach the size of the SSCs and allows the study of physical and chemical properties of the molecular gas in these sources. In the 14 SSC sources and in the frequency ranges 342.0-345.8 GHz and 353.9-357.7 GHz we detect 55 lines belonging to 19 different chemical species. The SSCs differ significantly in chemical complexity, with the richest clusters showing 19 species and the least complex showing 4 species. We detect HCN isotopologues and isomers (H$^{13}$CN, HC$^{15}$N, H$^{15}$NC), abundant HC$_3$N, SO and S$^{18}$O, SO$_2$, and H$_2$CS. The gas ratios CO/HCN, CO/HCO$^+$ are low, ~1-10, implying high dense gas fractions in the SSCs. Line ratio analyses suggests chemistry consistent with photon-dominated regions and mechanical heating. None of the SSCs near the galaxy center show line ratios that imply an X-ray dominated region, suggesting that heating by any (still unknown) AGN does not play a major role. The gas temperatures are high in most sources, with an average rotational temperature of ~130 K in SO$_2$. The widespread existence of vibrationally excited HCN and HC$_3$N transitions implies strong IR radiation fields, potentially trapped by a greenhouse effect due to high continuum opacities.
261 - Fabrizio Massi 2014
NGC6357 is an active star forming region with very young massive open clusters (OC). These clusters contain some of the most massive stars in the Galaxy and strongly interact with nearby giant molecular clouds (GMC). We study the young stellar populations of the region and of the OC Pismis24, focusing on their relationship with the nearby GMCs. We seek evidence of triggered star formation propagating from the clusters. We used new deep JHKs photometry, along with unpublished deep IRAC/Spitzer MIR photometry, complemented with optical HST/WFPC2 high spatial resolution photometry and X-ray Chandra observations, to constrain age, initial mass function, and star formation modes in progress. We carefully examine and discuss all sources of bias (saturation, confusion, different sensitivities, extinction). NGC6357 hosts three large young stellar clusters, of which Pismis24 is the most prominent. We found that Pismis24 is a very young (~1-3 Myr) OC with a Salpeter-like IMF and a few thousand members. A comparison between optical and IR photometry indicates that the fraction of members with a NIR excess (i. e., with a circumstellar disk) is in the range 0.3-0.6, consistent with its photometrically derived age. We also find that Pismis24 is likely subdivided into a few different sub-clusters, one of which contains almost all the massive members. There are indications of current star formation triggered by these massive stars, but clear age trends could not be derived (although the fraction of stars with a NIR excess does increase towards the HII region associated with the cluster). The gas out of which Pismis24 formed must have been distributed in dense clumps within a cloud of less dense gas ~1 pc in radius. Our findings provide some new insight into how young stellar populations and massive stars emerge, and evolve in the first few Myr after birth, from a giant molecular cloud complex.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا