Do you want to publish a course? Click here

Jupiters composition suggests its core assembled exterior to the N2 snowline

138   0   0.0 ( 0 )
 Added by Karin Oberg
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Jupiters atmosphere is enriched in C, N, S, P, Ar, Kr and Xe with respect to solar abundances by a factor of ~3. Gas Giant envelopes are mainly enriched through the dissolution of solids in the atmosphere, and this constant enrichment factor is puzzling since several of the above elements are not expected to have been in the solid phase in Jupiters feeding zone; most seriously, Ar and the main carrier of N, N2, only condense at the very low temperatures, 21-26 K, associated with the outer solar nebula. We propose that a plausible solution to the enigma of Jupiters uniform enrichment pattern is that Jupiters core formed exterior to the N2 and Ar snowlines, beyond 30 au, resulting in a Solar composition core in all volatiles heavier than Ne. During envelope accretion and planetesimal bombardment, some of the core mixed in with the envelope causing the observed enrichment pattern. We show that this scenario naturally produces the observed atmosphere composition, even with substantial pollution from N-poor pebble and planetesimal accretion in Jupiters final feeding zone. We note that giant core formation at large nebular radii is consistent with recent models of gas giant core formation through pebble accretion, which requires the core to form exterior to Jupiters current location to counter rapid inward migration during the core and envelope formation process. If this scenario is common, gas giant core formation may account for many of the gaps observed in protoplanetary disks between 10s and 100 au.

rate research

Read More

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating modes, primarily in the field of direct imaging of exoplanetary systems, focusing on exoplanets as point sources and circumstellar disks as extended objects. The achievements obtained thus far with SPHERE (~200 refereed publications) in different areas (exoplanets, disks, solar system, stellar physics...) have motivated a large consortium to propose an even more ambitious set of science cases, and its corresponding technical implementation in the form of an upgrade. The SPHERE+ project capitalizes on the expertise and lessons learned from SPHERE to push high contrast imaging performance to its limits on the VLT 8m-telescope. The scientific program of SPHERE+ described in this document will open a new and compelling scientific window for the upcoming decade in strong synergy with ground-based facilities (VLT/I, ELT, ALMA, and SKA) and space missions (Gaia, JWST, PLATO and WFIRST). While SPHERE has sampled the outer parts of planetary systems beyond a few tens of AU, SPHERE+ will dig into the inner regions around stars to reveal and characterize by mean of spectroscopy the giant planet population down to the snow line. Building on SPHEREs scientific heritage and resounding success, SPHERE+ will be a dedicated survey instrument which will strengthen the leadership of ESO and the European community in the very competitive field of direct imaging of exoplanetary systems. With enhanced capabilities, it will enable an even broader diversity of science cases including the study of the solar system, the birth and death of stars and the exploration of the inner regions of active galactic nuclei.
The existence of hot Jupiters has challenged theories of planetary formation since the first extrasolar planets were detected. Giant planets are generally believed to form far from their host stars, where volatile materials like water exist in their solid phase, making it easier for giant planet cores to accumulate. Several mechanisms have been proposed to explain how giant planets can migrate inward from their birth sites to short-period orbits. One such mechanism, called Kozai-Lidov migration, requires the presence of distant companions in orbits inclined by more than $sim40$ degrees with respect to the plane of the hot Jupiters orbit. The high occurrence rate of wide companions in hot Jupiter systems lends support to this theory for migration. However, the exact orbital inclinations of these detected planetary and stellar companions is not known, so it is not clear whether the mutual inclination of these companions is large enough for the Kozai-Lidov process to operate. This paper shows that in systems orbiting cool stars with convective outer layers, the orbits of most wide planetary companions to hot Jupiters must be well aligned with the orbits of the hot Jupiters and the spins of the host stars. For a variety of possible distributions for the inclination of the companion, the width of the distribution must be less than $sim20$ degrees to recreate the observations with good fidelity. As a result, the companion orbits are likely well-aligned with those of the hot Jupiters, and the Kozai-Lidov mechanism does not enforce migration in these systems.
79 - Peter Gao , Diana Powell 2021
The day and nightside temperatures of hot Jupiters are diagnostic of heat transport processes in their atmospheres. Recent observations have shown that the nightsides of hot Jupiters are a nearly constant 1100 K for a wide range of equilibrium temperatures (T$_{eq}$), lower than those predicted by 3D global circulation models. Here we investigate the impact of nightside clouds on the observed nightside temperatures of hot Jupiters using an aerosol microphysics model. We find that silicates dominate the cloud composition, forming an optically thick cloud deck on the nightsides of all hot Jupiters with T$_{eq}$ $leq$ 2100 K. The observed nightside temperature is thus controlled by the optical depth profile of the silicate cloud with respect to the temperature-pressure profile. As nightside temperatures increase with T$_{eq}$, the silicate cloud is pushed upwards, forcing observations to probe cooler altitudes. The cloud vertical extent remains fairly constant due to competing impacts of increasing vertical mixing strength with T$_{eq}$ and higher rates of sedimentation at higher altitudes. These effects, combined with the intrinsically subtle increase of the nightside temperature with T$_{eq}$ due to decreasing radiative timescale at higher instellation levels lead to low, constant nightside photospheric temperatures consistent with observations. Our results suggest a drastic reduction in the day-night temperature contrast when nightside clouds dissipate, with the nightside emission spectra transitioning from featureless to feature-rich. We also predict that cloud absorption features in the nightside emission spectra of hot Jupiters should reach $geq$100 ppm, potentially observable with the James Webb Space Telescope.
We present here observational evidence that the snowline plays a significant role in the formation and evolution of gas giant planets. When considering the population of observed exoplanets, we find a boundary in mass-semimajor axis space that suggests planets are preferentially found beyond the snowline prior to undergoing gap-opening inward migration and associated gas accretion. This is consistent with theoretical models suggesting that sudden changes in opacity -- as would occur at the snowline -- can influence core migration. Furthermore, population synthesis modelling suggests that this boundary implies that gas giant planets accrete ~ 70 % of the inward flowing gas, allowing ~ 30$ % through to the inner disc. This is qualitatively consistent with observations of transition discs suggesting the presence of inner holes, despite there being ongoing gas accretion.
We have obtained high-resolution spectra of Jupiters Great Red Spot (GRS) between 4.6 and 5.4 microns using telescopes on Mauna Kea in order to derive gas abundances and to constrain its cloud structure between 0.5 and 5~bars. We used line profiles of deuterated methane CH3D at 4.66 microns to infer the presence of an opaque cloud at 5+/-1 bar. From thermochemical models this is almost certainly a water cloud. We also used the strength of Fraunhofer lines in the GRS to obtain the ratio of reflected sunlight to thermal emission. The level of the reflecting layer was constrained to be at 570+/-30 mbar based on fitting strong ammonia lines at 5.32 microns. We identify this layer as an ammonia cloud based on the temperature where gaseous ammonia condenses. We found evidence for a strongly absorbing, but not totally opaque, cloud layer at pressures deeper than 1.3 bar by combining Cassini/CIRS spectra of the GRS at 7.18 microns with ground-based spectra at 5 microns. This is consistent with the predicted level of an NH4SH cloud. We also constrained the vertical profile of water and ammonia. The GRS spectrum is matched by a saturated water profile above an opaque water cloud at 5~bars. The pressure of the water cloud constrains Jupiters O/H ratio to be at least 1.1 times solar. The ammonia mole fraction is 200+/-50ppm for pressures between 0.7 and 5 bar. Its abundance is 40 ppm at the estimated pressure of the reflecting layer. We obtained 0.8+/-0.2 ppm for PH3, a factor of 2 higher than in the warm collar surrounding the GRS. We detected all 5 naturally occurring isotopes of germanium in GeH4 in the Great Red Spot. We obtained an average value of 0.35+/-0.05 ppb for GeH4. Finally, we measured 0.8+/-0.2 ppb for CO in the deep atmosphere.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا