Do you want to publish a course? Click here

SPHERE+: Imaging young Jupiters down to the snowline

114   0   0.0 ( 0 )
 Added by Anthony Boccaletti
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating modes, primarily in the field of direct imaging of exoplanetary systems, focusing on exoplanets as point sources and circumstellar disks as extended objects. The achievements obtained thus far with SPHERE (~200 refereed publications) in different areas (exoplanets, disks, solar system, stellar physics...) have motivated a large consortium to propose an even more ambitious set of science cases, and its corresponding technical implementation in the form of an upgrade. The SPHERE+ project capitalizes on the expertise and lessons learned from SPHERE to push high contrast imaging performance to its limits on the VLT 8m-telescope. The scientific program of SPHERE+ described in this document will open a new and compelling scientific window for the upcoming decade in strong synergy with ground-based facilities (VLT/I, ELT, ALMA, and SKA) and space missions (Gaia, JWST, PLATO and WFIRST). While SPHERE has sampled the outer parts of planetary systems beyond a few tens of AU, SPHERE+ will dig into the inner regions around stars to reveal and characterize by mean of spectroscopy the giant planet population down to the snow line. Building on SPHEREs scientific heritage and resounding success, SPHERE+ will be a dedicated survey instrument which will strengthen the leadership of ESO and the European community in the very competitive field of direct imaging of exoplanetary systems. With enhanced capabilities, it will enable an even broader diversity of science cases including the study of the solar system, the birth and death of stars and the exploration of the inner regions of active galactic nuclei.



rate research

Read More

Context. Observing Jupiters synchrotron emission from the Earth remains today the sole method to scrutinize the distribution and dynamical behavior of the ultra energetic electrons magnetically trapped around the planet (because in-situ particle data are limited in the inner magnetosphere). Aims. We perform the first resolved and low-frequency imaging of the synchrotron emission with LOFAR at 127 MHz. The radiation comes from low energy electrons (~1-30 MeV) which map a broad region of Jupiters inner magnetosphere. Methods (see article for complete abstract) Results. The first resolved images of Jupiters radiation belts at 127-172 MHz are obtained along with total integrated flux densities. They are compared with previous observations at higher frequencies and show a larger extent of the synchrotron emission source (>=4 $R_J$). The asymmetry and the dynamic of east-west emission peaks are measured and the presence of a hot spot at lambda_III=230 {deg} $pm$ 25 {deg}. Spectral flux density measurements are on the low side of previous (unresolved) ones, suggesting a low-frequency turnover and/or time variations of the emission spectrum. Conclusions. LOFAR is a powerful and flexible planetary imager. The observations at 127 MHz depict an extended emission up to ~4-5 planetary radii. The similarities with high frequency results reinforce the conclusion that: i) the magnetic field morphology primarily shapes the brightness distribution of the emission and ii) the radiating electrons are likely radially and latitudinally distributed inside about 2 $R_J$. Nonetheless, the larger extent of the brightness combined with the overall lower flux density, yields new information on Jupiters electron distribution, that may shed light on the origin and mode of transport of these particles.
141 - A. Zurlo , D. Mesa , S. Desidera 2018
We present observations with the planet finder SPHERE of a selected sample of the most promising radial velocity (RV) companions for high-contrast imaging. Using a Monte Carlo simulation to explore all the possible inclinations of the orbit of wide RV companions, we identified the systems with companions that could potentially be detected with SPHERE. We found the most favorable RV systems to observe are : HD,142, GJ,676, HD,39091, HIP,70849, and HD,30177 and carried out observations of these systems during SPHERE Guaranteed Time Observing (GTO). To reduce the intensity of the starlight and reveal faint companions, we used Principle Component Analysis (PCA) algorithms alongside angular and spectral differential imaging. We injected synthetic planets with known flux to evaluate the self-subtraction caused by our data reduction and to determine the 5$sigma$ contrast in the J band $vs$ separation for our reduced images. We estimated the upper limit on detectable companion mass around the selected stars from the contrast plot obtained from our data reduction. Although our observations enabled contrasts larger than 15 mag at a few tenths of arcsec from the host stars, we detected no planets. However, we were able to set upper mass limits around the stars using AMES-COND evolutionary models. We can exclude the presence of companions more massive than 25-28 MJup around these stars, confirming the substellar nature of these RV companions.
Recent high-contrast imaging surveys, looking for planets in young, nearby systems showed evidence of a small number of giant planets at relatively large separation beyond typically 20 au where those surveys are the most sensitive. Access to smaller physical separations between 5 and 20 au is the next step for future planet imagers on 10 m telescopes and ELTs in order to bridge the gap with indirect techniques (radial velocity, transit, astrometry with Gaia). In that context, we recently proposed a new algorithm, Keplerian-Stacker, combining multiple observations acquired at different epochs and taking into account the orbital motion of a potential planet present in the images to boost the ultimate detection limit. We showed that this algorithm is able to find planets in time series of simulated images of SPHERE even when a planet remains undetected at one epoch. Here, we validate the K-Stacker algorithm performances on real SPHERE datasets, to demonstrate its resilience to instrumental speckles and the gain offered in terms of true detection. This will motivate future dedicated multi-epoch observation campaigns in high-contrast imaging to search for planets in emitted and reflected light. Results. We show that K-Stacker achieves high success rate when the SNR of the planet in the stacked image reaches 7. The improvement of the SNR ratio goes as the square root of the total exposure time. During the blind test and the redetection of HD 95086 b, and betaPic b, we highlight the ability of K-Stacker to find orbital solutions consistent with the ones derived by the state of the art MCMC orbital fitting techniques, confirming that in addition to the detection gain, K-Stacker offers the opportunity to characterize the most probable orbital solutions of the exoplanets recovered at low signal to noise.
Young giant exoplanets emit infrared radiation that can be linearly polarized up to several percent. This linear polarization can trace: 1) the presence of atmospheric cloud and haze layers, 2) spatial structure, e.g. cloud bands and rotational flattening, 3) the spin axis orientation and 4) particle sizes and cloud top pressure. We introduce a novel high-contrast imaging scheme that combines angular differential imaging (ADI) and accurate near-infrared polarimetry to characterize self-luminous giant exoplanets. We implemented this technique at VLT/SPHERE-IRDIS and developed the corresponding observing strategies, the polarization calibration and the data-reduction approaches. By combining ADI and polarimetry we can characterize planets that can be directly imaged with a very high signal-to-noise ratio. We use the IRDIS pupil-tracking mode and combine ADI and principal component analysis to reduce speckle noise. We take advantage of IRDIS dual-beam polarimetric mode to eliminate differential effects that severely limit the polarimetric sensitivity (flat-fielding errors, differential aberrations and seeing), and thus further suppress speckle noise. To correct for instrumental polarization effects, we apply a detailed Mueller matrix model that describes the telescope and instrument and that has an absolute polarimetric accuracy $leq0.1%$. Using this technique we have observed the planets of HR 8799 and the (sub-stellar) companion PZ Tel B. Unfortunately, we do not detect a polarization signal in a first analysis. We estimate preliminary $1sigma$ upper limits on the degree of linear polarization of $sim1%$ and $sim0.1%$ for the planets of HR 8799 and PZ Tel B, respectively. The achieved sub-percent sensitivity and accuracy show that our technique has great promise for characterizing exoplanets through direct-imaging polarimetry.
72 - A. Vigan , C. Gry , G. Salter 2015
Sirius has always attracted a lot of scientific interest, especially after the discovery of a companion white dwarf at the end of the 19th century. Very early on, the existence of a potential third body was put forward to explain some of the observed properties of the system. We present new coronagraphic observations obtained with VLT/SPHERE that explore, for the very first time, the innermost regions of the system down to 0.2 (0.5 AU) from Sirius A. Our observations cover the near-infrared from 0.95 to 2.3 $mu$m and they offer the best on-sky contrast ever reached at these angular separations. After detailing the steps of our SPHERE/IRDIFS data analysis, we present a robust method to derive detection limits for multi-spectral data from high-contrast imagers and spectrographs. In terms of raw performance, we report contrasts of 14.3 mag at 0.2, ~16.3 mag in the 0.4-1.0 range and down to 19 mag at 3.7. In physical units, our observations are sensitive to giant planets down to 11 $M_{Jup}$ at 0.5 AU, 6-7 $M_{Jup}$ in the 1-2 AU range and ~4 $M_{Jup}$ at 10 AU. Despite the exceptional sensitivity of our observations, we do not report the detection of additional companions around Sirius A. Using a Monte Carlo orbital analysis, we show that we can reject, with about 50% probability, the existence of an 8 $M_{Jup}$ planet orbiting at 1 AU. In addition to the results presented in the paper, we provide our SPHERE/IFS data reduction pipeline at http://people.lam.fr/vigan.arthur/ under the MIT license.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا