Do you want to publish a course? Click here

Readout Electronics of T0 Detector in the External Target Experiment of CSR in HIRFL

60   0   0.0 ( 0 )
 Added by Lei Zhao
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

T0 detector, based on Multi-gap Resistive Plate Chambers (MRPC) technology, is one of the key components in the External Target Experiment. Through precision measurements of the MRPC signals, timing of the beam impact on target can be obtained and used as the start time for other detectors. A readout electronics system was designed for the T0 detector. Based on the NINO ASIC, front-end-electronics (FEE) circuits which can achieve high precision leading-edge discrimination and Charge-to-Time Conversion (QTC) were designed for the internal and external MRPCs of the T0 detector. The output pulse of the FEE is then digitized by high precision time digitization modules with Time-to-Digital Converters (TDCs), trigger matching and other control logic integrated within Field Programmable Gate Array (FPGA) devices. To evaluate the functionality and performance, we also conducted a series of tests of the electronics. Results indicate that the system functions well and the time precision of the electronics is better than 21 ps, which satisfies the application requirement.



rate research

Read More

The CSR External-target Experiment (CEE) will be the first large-scale nuclear physics experiment device at the Cooling Storage Ring (CSR) of the Heavy-Ion Research Facility in Lanzhou (HIRFL) in China. A new T0 detector has been proposed to measure the multiplicity, angular distribution and timing information of charged particles produced in heavy-ion collisions at the target region. Multi-gap resistive plate chamber (MRPC) technology was chosen as part of the construction of the T0 detector, which provides precision event collision times (T0) and collision geometry information. The prototype was tested with hadron and heavy-ion beams to study its performance. By comparing the experimental results with a Monte Carlo simulation, the time resolution of the MRPCs are found to be $sim$ 50 ps or better. The timing performance of the T0 detector, including both detector and readout electronics, we found to fulfil the requirements of the CEE.
The STEREO experiment will search for a sterile neutrino by measuring the anti-neutrino energy spectrum as a function of the distance from the source, the ILL nuclear reactor. A dedicated electronic system, hosted in a single microTCA crate, was designed for this experiment. It performs triggering in two stages with various selectable conditions, processing and readout via UDP/IPBUS of 68 photomultiplier signals continuously digitized at 250 MSPS. Additionally, for detector performance monitoring, the electronics allow on-line calibration by driving LED synchronously with the data acquisition. This paper describes the electronics requirements, architecture and the performances achieved.
123 - Fei Zhang , Wen-Xi Peng , Ke Gong 2016
The Silicon Tracker (STK) is a detector of the DAMPE satellite to measure the incidence direction of high energy cosmic ray. It consists of 6 X-Y double layers of silicon micro-strip detectors with 73,728 readout channels. Its a great challenge to readout the channels and process the huge volume of data in the critical space environment. 1152 Application Specific Integrated Circuits (ASIC) and 384 ADCs are adopted to readout the detector channels. The 192 Tracker Front-end Hybrid (TFH) modules and 8 identical Tracker Readout Board (TRB) modules are designed to control and digitalize the front signals. In this paper, the design of the readout electronics for STK and its performance will be presented in detail.
For the upgrade of the inner tracker of the BESIII spectrometer, planned for 2018, a lightweight tracker based on an innovative Cylindrical Gas Electron Multiplier (CGEM) detector is now under development. The analogue readout of the CGEM enables the use of a charge centroid algorithm to improve the spatial resolution to better than 130 um while loosening the pitch strip to 650 um, which allows to reduce the total number of channels to about 10 000. The channels are readout by 160 dedicated integrated 64-channel front-end ASICs, providing a time and charge measurement and featuring a fully-digital output. The energy measurement is extracted either from the time-over-threshold (ToT) or the 10-bit digitisation of the peak amplitude of the signal. The time of the event is generated by quad-buffered low-power TDCs, allowing for rates in excess of 60 kHz per channel. The TDCs are based on analogue interpolation techniques and produce a time stamp (or two, if working in ToT mode) of the event with a time resolution better than 50 ps. The front-end noise, based on a CSA and CR-RC2 shapers, dominate the channel intrinsic time jitter, which is less than 5 ns r.m.s.. The time information of the hit can be used to reconstruct the track path, operating the detector as a small TPC and hence improving the position resolution when the distribution of the cloud, due to large incident angle or magnetic field, is very broad. Event data is collected by an off-detector motherboard, where each GEM-ROC readout card handles 4 ASIC carrier PCBs (512 channels). Configuration upload and data readout between the off-detector electronics and the VME-based data collector cards are managed by bi-directional fibre optical links.
PandaX-4T is a dark matter direct detection experiment located in China jinping underground laboratory. The central apparatus is a dual-phase xenon detector containing 4 ton liquid xenon in the sensitive volume, with about 500 photomultipliers instrumented in the top and the bottom of the detector. In this paper we present a completely new system of readout electronics and data acquisition in the PandaX-4T experiment. Compared to the one used in the previous PandaX dark matter experiments, the new system features triggerless readout and higher bandwidth. With triggerless readout, dark matter searches are not affected by the efficiency loss of external triggers. The system records single photelectron signals of the dominant PMTs with an average efficiency of 96%, and achieves the bandwidth of more than 450 MB/s. The system has been used to successfully acquire data during the commissioning runs of PandaX-4T.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا