No Arabic abstract
The CSR External-target Experiment (CEE) will be the first large-scale nuclear physics experiment device at the Cooling Storage Ring (CSR) of the Heavy-Ion Research Facility in Lanzhou (HIRFL) in China. A new T0 detector has been proposed to measure the multiplicity, angular distribution and timing information of charged particles produced in heavy-ion collisions at the target region. Multi-gap resistive plate chamber (MRPC) technology was chosen as part of the construction of the T0 detector, which provides precision event collision times (T0) and collision geometry information. The prototype was tested with hadron and heavy-ion beams to study its performance. By comparing the experimental results with a Monte Carlo simulation, the time resolution of the MRPCs are found to be $sim$ 50 ps or better. The timing performance of the T0 detector, including both detector and readout electronics, we found to fulfil the requirements of the CEE.
T0 detector, based on Multi-gap Resistive Plate Chambers (MRPC) technology, is one of the key components in the External Target Experiment. Through precision measurements of the MRPC signals, timing of the beam impact on target can be obtained and used as the start time for other detectors. A readout electronics system was designed for the T0 detector. Based on the NINO ASIC, front-end-electronics (FEE) circuits which can achieve high precision leading-edge discrimination and Charge-to-Time Conversion (QTC) were designed for the internal and external MRPCs of the T0 detector. The output pulse of the FEE is then digitized by high precision time digitization modules with Time-to-Digital Converters (TDCs), trigger matching and other control logic integrated within Field Programmable Gate Array (FPGA) devices. To evaluate the functionality and performance, we also conducted a series of tests of the electronics. Results indicate that the system functions well and the time precision of the electronics is better than 21 ps, which satisfies the application requirement.
An upgrade of the long baseline neutrino experiment T2K near detector ND280 is currently being developed with the goal to reduce systematic uncertainties in the prediction of number of events at the far detector Super-Kamiokande. The upgrade program includes the design and construction of a new highly granular fully active scintillator detector with 3D WLS fiber readout as a neutrino target. The detector of about $200times 180times 60~cm^3$ in size and a mass of $sim$2.2~tons will be assembled from about $2times10^6$ plastic scintillator cubes of $1times1times1~cm^3$. Each cube is read out by three orthogonal Kuraray Y11 Wave Length Shifting (WLS) fibers threaded through the detector. A detector prototype made of 125 cubes was assembled and tested in a charged particle test beam at CERN in the fall of 2017. This paper presents the results obtained on the light yield and timing as well as on the optical cross-talk between the cubes.
Gas detector are very light instrument used in high energy physics to measure the particle properties: position and momentum. Through high electric field is possible to use the Gas Electron Multiplier (GEM) technology to detect the charged particles
Following the Higgs particle discovery, the Large Hadron Collider complex will be upgraded in several phases allowing the luminosity to increase to $7 times 10^{34}cm^{-2}s^{-1}$. In order to adapt the ATLAS detector to the higher luminosity environment after the upgrade, part of the ATLAS muon end-cap system, the Small Wheel, will be replaced by the New Small Wheel. The New Small Wheel includes two kinds of detectors: small-strip Thin Gap Chambers and Micromegas. Shandong University, part of the ATLAS collaboration, participates in the construction of the ATLAS New Small Wheel by developing, producing and testing the performance of part of the small-strip Thin Gap Chambers. This paper describes the construction and cosmic-ray testing of small-strip Thin Gap Chambers in Shandong University.
The SoLid collaboration has developed a new detector technology to detect electron anti-neutrinos at close proximity to the Belgian BR2 reactor at surface level. A 288$,$kg prototype detector was deployed in 2015 and collected data during the operational period of the reactor and during reactor shut-down. Dedicated calibration campaigns were also performed with gamma and neutron sources. This paper describes the construction of the prototype detector with a high control on its proton content and the stability of its operation over a period of several months after deployment at the BR2 reactor site. All detector cells provide sufficient light yields to achieve a target energy resolution of better than 20%/$sqrt{E(MeV)}$. The capability of the detector to track muons is exploited to equalize the light response of a large number of channels to a precision of 3% and to demonstrate the stability of the energy scale over time. Particle identification based on pulse-shape discrimination is demonstrated with calibration sources. Despite a lower neutron detection efficiency due to triggering constraints, the main backgrounds at the reactor site were determined and taken into account in the shielding strategy for the main experiment. The results obtained with this prototype proved essential in the design optimization of the final detector. This paper is dedicated to our SCK$cdot$CEN colleague, Edgar Koonen, who passed away unexpectedly in 2017. Edgar was part of the SoLid collaboration since its inception and his efforts were vital to get the experiment started. He will be duly missed.