Do you want to publish a course? Click here

Two-band superconductivity with unconventional pairing symmetry in HfV$_2$Ga$_4$

109   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this letter, we have examined the superconducting ground state of the HfV$_2$Ga$_4$ compound using resistivity, magnetization, zero-field (ZF) and transverse-field (TF) muon-spin relaxation and rotation ($mu$SR) measurements. Resistivity and magnetization unveil the onset of bulk superconductivity with $T_{bf c}sim$ 3.9~K, while TF-$mu$SR measurements show that the temperature dependence of the superfluid density is well described by a nodal two-gap $s$+$d$-wave order parameter model. In addition, ZF muon relaxation rate increases with decreasing temperature below 4.6 K, indicating the presence of weak spin fluctuations. These observations suggest an unconventional multiband nature of the superconductivity possibly arising from the distinct $d$-bands of V and Hf ions with spin fluctuations playing an important role. To better understand these findings, we carry out first-principles electronic-structure calculations, further highlighting that the Fermi surface consists of multiple disconnected sheets with very different orbital weights and spin-orbit coupling, bridging the way for a nodal multiband superconductivity scenario. In this vein, therefore, HfV$_2$Ga$_4$-family stands out as an open avenue to novel unexplored unconventional superconducting compounds, such as ScV$_2$Ga$_4$ and ZrV$_2$Ga$_4$, and other many rare earths based materials.



rate research

Read More

The HfV$_2$Ga$_4$ compound was recently reported to exhibit unusual bulk superconducting properties, with the possibility of multiband behavior. To gain insight into its properties, we performed ab-initio electronic structure calculations based on the Density Functional Theory (DFT). Our results show that the density of states at the Fermi energy is mainly composed by V--$d$ states. The McMillan formula predicts a superconducting critical temperature ($T_{c}$) of approximately $3.9,$K, in excellent agreement with the experimental value at $4.1,$K, indicating that superconductivity in this new compound may be explained by the electron-phonon mechanism. Calculated valence charge density maps clearly show directional bonding between Hf and V atoms with 1D highly populated V-chains, and some ionic character between Hf--Ga and V--Ga bonds. Finally, we have shown that there are electrons occupying two distinct bands at the Fermi level, with different characters, which supports experimental indications of possible multiband superconductivity. Based on the results, we propose the study of a related compound, ScV$_2$Ga$_4$, showing that it has similar electronic properties, but probably with a higher $T_c$ than HfV$_2$Ga$_4$.
Following the discovery of superconductivity in quasi-one-dimensional K$_2$Cr$_3$As$_3$ containing [(Cr$_3$As$_3$)$^{2-}$]$_{infty}$ chains [J. K. Bao et al., arXiv: 1412.0067 (2014)], we succeeded in synthesizing an analogous compound, Rb$_2$Cr$_3$As$_3$, which also crystallizes in a hexagonal lattice. The replacement of K by Rb results in an expansion of $a$ axis by 3%, indicating a weaker interchain coupling in Rb$_2$Cr$_3$As$_3$. Bulk superconductivity emerges at 4.8 K, above which the normal-state resistivity shows a linear temperature dependence up to 35 K. The estimated upper critical field at zero temperature exceeds the Pauli paramagnetic limit by a factor of two. Furthermore, the electronic specific-heat coefficient extrapolated to zero temperature in the mixed state increases with $sqrt{H}$, suggesting existence of nodes in the superconducting energy gap. Hence Rb$_2$Cr$_3$As$_3$ manifests itself as another example of unconventional superconductor in the Cr$_3$As$_3$-chain based system.
It has long remained elusive whether CuCo$_{2}$S$_{4}$ thiospinel shows bulk superconductivity. Here we clarify the issue by studying on the samples of sulfur-deficient CuCo$_{2}$S$_{3.7}$ and sulfurized CuCo$_{2}$S$_{4}$. The sample CuCo$_{2}$S$_{3.7}$ has a smaller lattice constant of $a=9.454$ {AA}, and it is not superconducting down to 1.8 K. After a full sulfurization, the $a$ axis of the thiospinel phase increases to 9.475 {AA}, and the thiospinel becomes nearly stoichiometric CuCo$_{2}$S$_{4}$, although a secondary phase of slightly Cu-doped CoS$_2$ forms. Bulk superconductivity at 4.2 K and Pauli paramagnetism have been demonstrated for the sulfurized CuCo$_{2}$S$_{4}$ by the measurements of electrical resistivity, magnetic susceptibility, and specific heat.
Motivated by the possible non-spin-singlet superconductivity in the magic-angle twisted trilayer graphene experiment, we investigate the triplet-pairing superconductivity arising from a correlation-induced spin-fermion model on a honeycomb lattice. We find that the $f$-wave pairing is favored due to the valley-sublattice structure, and the superconducting state is time-reversal symmetric, fully gapped, and non-topological. With a small in-plane magnetic field, the superconducting state becomes partially polarized, and the transition temperature can be slightly enhanced. Our results apply qualitatively for the triplet-pairing superconductivity in graphene-based moire systems, which is fundamentally distinct from triplet superconductivity in $^3$He and ferromagnetic superconductors.
Beyond the conventional electron pairing mediated by phonons, high-temperature superconductivity in cuprates is believed to stem from quantum spin liquid (QSL). The unconventional superconductivity by doping a spin liquid/Mott insulator, is a long-sought goal but a principal challenge in condensed matter physics because of the lack of an ideal QSL platform. Here we report the pressure induced metallization and possible unconventional superconductivity in $NaYbSe_{2}$, which belongs to a large and ideal family of triangular lattice spin liquid we revealed recently and is evidenced to possess a QSL ground state. The charge gap of NaYbSe2 is gradually reduced by applying pressures, and at ~20 GPa the crystal jumps into a superconducting (SC) phase with Tc ~ 5.8 K even before the insulating gap is completely closed. The metallization is confirmed by further high-pressure experiments but the sign of superconductivity is not well repeated. No symmetry breaking accompanies the SC transition, as indicated by X-ray diffraction and low-temperature Raman experiments under high pressures. This intrinsically connects QSL and SC phases, and suggests an unconventional superconductivity developed from QSL. We further observed the magnetic-field-tuned superconductor-insulator transition which is analogous to that found in the underdoped cuprate superconductor $La_{2-x}Sr_{x}CuO_{4}$. The study is expected to inspire interest in exploring new types of superconductors and sheds light into the intriguing physics from a spin liquid/Mott insulator to a superconductor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا