Do you want to publish a course? Click here

Correlation-induced triplet pairing superconductivity in graphene-based moire systems

100   0   0.0 ( 0 )
 Added by Yang-Zhi Chou
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by the possible non-spin-singlet superconductivity in the magic-angle twisted trilayer graphene experiment, we investigate the triplet-pairing superconductivity arising from a correlation-induced spin-fermion model on a honeycomb lattice. We find that the $f$-wave pairing is favored due to the valley-sublattice structure, and the superconducting state is time-reversal symmetric, fully gapped, and non-topological. With a small in-plane magnetic field, the superconducting state becomes partially polarized, and the transition temperature can be slightly enhanced. Our results apply qualitatively for the triplet-pairing superconductivity in graphene-based moire systems, which is fundamentally distinct from triplet superconductivity in $^3$He and ferromagnetic superconductors.



rate research

Read More

We present a systematic classification and analysis of possible pairing instabilities in graphene-based moire superlattices. Motivated by recent experiments on twisted double-bilayer graphene showing signs of triplet superconductivity, we analyze both singlet and triplet pairing separately, and describe how these two channels behave close to the limit where the system is invariant under separate spin rotations in the two valleys, realizing an SU(2)$_+$ $times$ SU(2)$_-$ symmetry. Further, we discuss the conditions under which singlet and triplet can mix via two nearly degenerate transitions, and how the different pairing states behave when an external magnetic field is applied. The consequences of the additional microscopic or emergent approximate symmetries relevant for superconductivity in twisted bilayer graphene and ABC trilayer graphene on hexagonal boron nitride are described in detail. We also analyze which of the pairing states can arise in mean-field theory and study the impact of corrections coming from ferromagnetic fluctuations. For instance, we show that, close to the parameters of mean-field theory, a nematic mixed singlet-triplet state emerges. Our study illustrates that graphene superlattices provide a rich platform for exotic superconducting states, and allow for the admixture of singlet and triplet pairing even in the absence of spin-orbit coupling.
We investigate the interplay of magnetic fluctuations and Cooper pairing in twisted bilayer graphene from a purely microscopic model within a large-scale tight-binding approach resolving the AA ngstrom scale. For local onsite repulsive interactions and using the random-phase approximation for spin fluctuations, we derive a microscopic effective pairing interaction that we use for self-consistent solutions of the Bogoliubov-de-Gennes equations of superconductivity. We study the predominant pairing types as function of interaction strength, temperature and band filling. For large regions of this parameter space, we find chiral $d$-wave pairing regimes, spontaneously breaking time-reversal symmetry, separated by magnetic instabilities at integer band fillings. Interestingly, the $d$-wave pairing is strongly concentrated in the AA regions of the moire unit cell and exhibits phase windings of integer multiples of $2pi$ around these superconducting islands, i.e. pinned vortices. The spontaneous circulating current creates a distinctive magnetic field pattern. This signature of the chiral pairing should be measurable by state-of-the-art experimental techniques.
Recent studies of unconventional superconductivity have focused on charge or spin fluctuation, instead of electron-phonon coupling, as an origin of attractive interaction between electrons. On the other hand, a multipole order, which represents electrons degrees of freedom in strongly correlated and spin-orbit-coupled systems, has recently been attracting much attention. Stimulated by this background, we investigate multipole-fluctuation-mediated superconductivity, which proposes a new pairing mechanism of unconventional superconductivity. Indeed, previous works have shown spin-triplet superconductivity induced by fluctuations of odd-parity electric multipole orders in isotropic systems. In this study, we establish a general formulation of the multipole-fluctuation-mediated superconductivity for all multipole symmetries, in both isotropic and crystalline systems. As a result, we reveal various anisotropic pairings induced by odd-parity and/or higher-order multipole fluctuations, which are beyond the ordinary charge or spin fluctuations. Topological superconductivity due to the mechanism is also discussed. Based on the obtained results, we discuss unconventional superconductivity in doped SrTiO$_3$, PrTi$_2$Al$_{20}$, Li$_2$(Pd, Pt)$_3$B, and magnetic multipole metals.
In this letter, we have examined the superconducting ground state of the HfV$_2$Ga$_4$ compound using resistivity, magnetization, zero-field (ZF) and transverse-field (TF) muon-spin relaxation and rotation ($mu$SR) measurements. Resistivity and magnetization unveil the onset of bulk superconductivity with $T_{bf c}sim$ 3.9~K, while TF-$mu$SR measurements show that the temperature dependence of the superfluid density is well described by a nodal two-gap $s$+$d$-wave order parameter model. In addition, ZF muon relaxation rate increases with decreasing temperature below 4.6 K, indicating the presence of weak spin fluctuations. These observations suggest an unconventional multiband nature of the superconductivity possibly arising from the distinct $d$-bands of V and Hf ions with spin fluctuations playing an important role. To better understand these findings, we carry out first-principles electronic-structure calculations, further highlighting that the Fermi surface consists of multiple disconnected sheets with very different orbital weights and spin-orbit coupling, bridging the way for a nodal multiband superconductivity scenario. In this vein, therefore, HfV$_2$Ga$_4$-family stands out as an open avenue to novel unexplored unconventional superconducting compounds, such as ScV$_2$Ga$_4$ and ZrV$_2$Ga$_4$, and other many rare earths based materials.
Single-layer FeSe films grown on the SrTiO3 substrate (FeSe/STO) have attracted much attention because of their possible record-high superconducting critical temperature Tc and distinct electronic structures in iron-based superconductors. However, it has been under debate on how high its Tc can really reach due to the inconsistency of the results obtained from the transport, magnetic and spectroscopic measurements. Here we report spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/STO films. By preparing high-quality single-layer FeSe/STO films, we observe for the first time strong superconductivity-induced Bogoliubov back-bending bands that extend to rather high binding energy ~100 meV by high-resolution angle-resolved photoemission measurements. The Bogoliubov back-bending band provides a new definitive benchmark of superconductivity pairing that is directly observed up to 83 K in the single-layer FeSe/STO films. Moreover, we find that the superconductivity pairing state can be further divided into two temperature regions of 64-83 K and below 64 K. We propose the 64-83 K region may be attributed to superconductivity fluctuation while the region below 64 K corresponds to the realization of long-range superconducting phase coherence. These results indicate that either Tc as high as 83 K is achievable in iron-based superconductors, or there is a pseudogap formation from superconductivity fluctuation in single-layer FeSe/STO films.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا