No Arabic abstract
We introduce the resource quantifier of weight of resource for convex quantum resource theories of states with arbitrary resources. We show that it captures the advantage that a resourceful state offers over all possible free states, in the operational task of exclusion of subchannels. Furthermore, we introduce information-theoretic quantities related to exclusion and find a connection between the weight of resource of a state, and the exclusion-type information of ensembles it can generate. These results provide support to a recent conjecture made in the context of convex quantum resource theories of measurements, about the existence of a weight-exclusion correspondence whenever there is a robustness-discrimination one. The results found in this article apply to the resource theory of entanglement, in which the weight of resource is known as the best-separable approximation or Lewenstein-Sanpera decomposition, introduced in 1998. Consequently, the results found here provide an operational interpretation to this 21 year-old entanglement quantifier.
The prevalent modus operandi within the framework of quantum resource theories has been to characterise and harness the resources within single objects, in what we can call emph{single-object} quantum resource theories. One can wonder however, whether the resources contained within multiple different types of objects, now in a emph{multi-object} quantum resource theory, can simultaneously be exploited for the benefit of an operational task. In this work, we introduce examples of such multi-object operational tasks in the form of subchannel discrimination and subchannel exclusion games, in which the player harnesses the resources contained within a state-measurement pair. We prove that for any state-measurement pair in which either of them is resourceful, there exist discrimination and exclusion games for which such a pair outperforms any possible free state-measurement pair. These results hold for arbitrary convex resources of states, and arbitrary convex resources of measurements for which classical post-processing is a free operation. Furthermore, we prove that the advantage in these multi-object operational tasks is determined, in a multiplicative manner, by the resource quantifiers of: emph{generalised robustness of resource} of both state and measurement for discrimination games and emph{weight of resource} of both state and measurement for exclusion games.
Quantum resource theories (QRTs) offer a highly versatile and powerful framework for studying different phenomena in quantum physics. From quantum entanglement to quantum computation, resource theories can be used to quantify a desirable quantum effect, develop new protocols for its detection, and identify processes that optimize its use for a given application. Particularly, QRTs revolutionize the way we think about familiar properties of physical systems like entanglement, elevating them from just being interesting from a fundamental point of view to being useful in performing practical tasks. The basic methodology of a general QRT involves partitioning all quantum states into two groups, one consisting of free states and the other consisting of resource states. Accompanying the set of free states is a collection of free quantum operations arising from natural restrictions on physical systems, and that consists of all the physical processes allowed by the resource theory and which acts invariantly on the set of free states. The QRT then studies what information processing tasks become possible using the restricted operations. Despite the large degree of freedom in how one defines the free states and free operations, unexpected similarities emerge among different QRTs in terms of resource measures and resource convertibility. As a result, objects that appear quite distinct on the surface, such as entanglement and quantum reference frames, appear to have great similarity on a deeper structural level. In this article we review the general framework of a quantum resource theory, focusing on common structural features, operational tasks, and resource measures. To illustrate these concepts, an overview is provided on some of the more commonly studied QRTs in the literature.
Wave-particle duality is one of the basic features of quantum mechanics, giving rise to the use of complex numbers in describing states of quantum systems, their dynamics, and interaction. Since the inception of quantum theory, it has been debated whether complex numbers are actually essential, or whether an alternative consistent formulation is possible using real numbers only. Here, we attack this long-standing problem both theoretically and experimentally, using the powerful tools of quantum resource theories. We show that - under reasonable assumptions - quantum states are easier to create and manipulate if they only have real elements. This gives an operational meaning to the resource theory of imaginarity. We identify and answer several important questions which include the state-conversion problem for all qubit states and all pure states of any dimension, and the approximate imaginarity distillation for all quantum states. As an application, we show that imaginarity plays a crucial role for state discrimination: there exist real quantum states which can be perfectly distinguished via local operations and classical communication, but which cannot be distinguished with any nonzero probability if one of the parties has no access to imaginarity. We confirm this phenomenon experimentally with linear optics, performing discrimination of different two-photon quantum states by local projective measurements. These results prove that complex numbers are an indispensable part of quantum mechanics.
Quantum resource theories offer a powerful framework for studying various phenomena in quantum physics. Despite considerable effort has been devoted to developing a unified framework of resource theories, there are few common properties that hold for all quantum resources. In this paper, we fill this gap by introducing the flag additivity based on the tensor product structure and the flag basis for the general quantum resources. To illustrate the usefulness of flag additivity, we show that flag additivity can be used to derive other nontrivial properties in quantum resource theories, e.g., strong monotonicity, convexity, and full additivity.
A series of recent works has shown that placing communication channels in a coherent superposition of alternative configurations can boost their ability to transmit information. Instances of this phenomenon are the advantages arising from the use of communication devices in a superposition of alternative causal orders, and those arising from the transmission of information along a superposition of alternative trajectories. The relation among these advantages has been the subject of recent debate, with some authors claiming that the advantages of the superposition of orders could be reproduced, and even surpassed, by other forms of superpositions. To shed light on this debate, we develop a general framework of resource theories of communication. In this framework, the resources are communication devices, and the allowed operations are (a) the placement of communication devices between the communicating parties, and (b) the connection of communication devices with local devices in the parties laboratories. The allowed operations are required to satisfy the minimal condition that they do not enable communication independently of the devices representing the initial resources. The resource-theoretic analysis reveals that the aforementioned criticisms on the superposition of causal orders were based on an uneven comparison between different types of quantum superpositions, exhibiting different operational features.