No Arabic abstract
Wave-particle duality is one of the basic features of quantum mechanics, giving rise to the use of complex numbers in describing states of quantum systems, their dynamics, and interaction. Since the inception of quantum theory, it has been debated whether complex numbers are actually essential, or whether an alternative consistent formulation is possible using real numbers only. Here, we attack this long-standing problem both theoretically and experimentally, using the powerful tools of quantum resource theories. We show that - under reasonable assumptions - quantum states are easier to create and manipulate if they only have real elements. This gives an operational meaning to the resource theory of imaginarity. We identify and answer several important questions which include the state-conversion problem for all qubit states and all pure states of any dimension, and the approximate imaginarity distillation for all quantum states. As an application, we show that imaginarity plays a crucial role for state discrimination: there exist real quantum states which can be perfectly distinguished via local operations and classical communication, but which cannot be distinguished with any nonzero probability if one of the parties has no access to imaginarity. We confirm this phenomenon experimentally with linear optics, performing discrimination of different two-photon quantum states by local projective measurements. These results prove that complex numbers are an indispensable part of quantum mechanics.
Complex numbers are widely used in both classical and quantum physics, and are indispensable components for describing quantum systems and their dynamical behavior. Recently, the resource theory of imaginarity has been introduced, allowing for a systematic study of complex numbers in quantum mechanics and quantum information theory. In this work we develop theoretical methods for the resource theory of imaginarity, motivated by recent progress within theories of entanglement and coherence. We investigate imaginarity quantification, focusing on the geometric imaginarity and the robustness of imaginarity, and apply these tools to the state conversion problem in imaginarity theory. Moreover, we analyze the complexity of real and general operations in optical experiments, focusing on the number of unfixed wave plates for their implementation. We also discuss the role of imaginarity for local state discrimination, proving that any pair of real orthogonal pure states can be discriminated via local real operations and classical communication. Our study reveals the significance of complex numbers in quantum physics, and proves that imaginarity is a resource in optical experiments.
Although entanglement is necessary for observing nonlocality in a Bell experiment, there are entangled states which can never be used to demonstrate nonlocal correlations. In a seminal paper [PRL 108, 200401 (2012)] F. Buscemi extended the standard Bell experiment by allowing Alice and Bob to be asked quantum, instead of classical, questions. This gives rise to a broader notion of nonlocality, one which can be observed for every entangled state. In this work we study a resource theory of this type of nonlocality referred to as Buscemi nonlocality. We propose a geometric quantifier measuring the ability of a given state and local measurements to produce Buscemi nonlocal correlations and establish its operational significance. In particular, we show that any distributed measurement which can demonstrate Buscemi nonlocal correlations provides strictly better performance than any distributed measurement which does not use entanglement in the task of distributed state discrimination. We also show that the maximal amount of Buscemi nonlocality that can be generated using a given state is precisely equal to its entanglement content. Finally, we prove a quantitative relationship between: Buscemi nonlocality, the ability to perform nonclassical teleportation, and entanglement. Using this relationship we propose new discrimination tasks for which nonclassical teleportation and entanglement lead to an advantage over their classical counterparts.
We introduce the resource quantifier of weight of resource for convex quantum resource theories of states with arbitrary resources. We show that it captures the advantage that a resourceful state offers over all possible free states, in the operational task of exclusion of subchannels. Furthermore, we introduce information-theoretic quantities related to exclusion and find a connection between the weight of resource of a state, and the exclusion-type information of ensembles it can generate. These results provide support to a recent conjecture made in the context of convex quantum resource theories of measurements, about the existence of a weight-exclusion correspondence whenever there is a robustness-discrimination one. The results found in this article apply to the resource theory of entanglement, in which the weight of resource is known as the best-separable approximation or Lewenstein-Sanpera decomposition, introduced in 1998. Consequently, the results found here provide an operational interpretation to this 21 year-old entanglement quantifier.
The prevalent modus operandi within the framework of quantum resource theories has been to characterise and harness the resources within single objects, in what we can call emph{single-object} quantum resource theories. One can wonder however, whether the resources contained within multiple different types of objects, now in a emph{multi-object} quantum resource theory, can simultaneously be exploited for the benefit of an operational task. In this work, we introduce examples of such multi-object operational tasks in the form of subchannel discrimination and subchannel exclusion games, in which the player harnesses the resources contained within a state-measurement pair. We prove that for any state-measurement pair in which either of them is resourceful, there exist discrimination and exclusion games for which such a pair outperforms any possible free state-measurement pair. These results hold for arbitrary convex resources of states, and arbitrary convex resources of measurements for which classical post-processing is a free operation. Furthermore, we prove that the advantage in these multi-object operational tasks is determined, in a multiplicative manner, by the resource quantifiers of: emph{generalised robustness of resource} of both state and measurement for discrimination games and emph{weight of resource} of both state and measurement for exclusion games.
In addition to the important role of contextuality in foundations of quantum theory, this intrinsically quantum property has been identified as a potential resource for quantum advantage in different tasks. It is thus of fundamental importance to study contextuality from the point of view of resource theories, which provide a powerful framework for the formal treatment of a property as an operational resource. In this contribution we review recent developments towards a resource theory of contextuality and connections with operational applications of this property.