Do you want to publish a course? Click here

Omnidirectional Wireless Power Transfer with Automatic Power Flow Control

98   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present an omnidirectional wireless power transfer (WPT) system capable of automatic power flow control using three orthogonal transmitter (Tx)-repeater (Rp) pairs. The power drawn from each transmitter is automatically adjusted depending on the mutual inductance between the receiver and the Tx-Rp pair. The proposed approach enables the receiver to harvest almost uniform power with high efficiency (90%) regardless of its position.



rate research

Read More

This paper proposes a robust transient stability constrained optimal power flow problem that addresses renewable uncertainties by the coordination of generation re-dispatch and power flow router (PFR) tuning.PFR refers to a general type of network-side controller that enlarges the feasible region of the OPF problem. The coordination between network-side and generator-side control in the proposed model is more general than the traditional methods which focus on generation dispatch only. An offline-online solution framework is developed to solve the problem efficiently. Under this framework the original problem is significantly simplified, so that we only need to solve a low-dimensional deterministic problem at the online stage to achieve real-time implementation with a high robustness level. The proposed method is verified on the modified New England 39-bus system. Numerical results demonstrate that the proposed method is efficient and shows good performance on economy and robustness.
Novel low-power wireless technologies and IoT applications open the door to the Industrial Internet of Things (IIoT). In this new paradigm, Wireless Sensor Networks (WSNs) must fulfil, despite energy and transmission power limitations, the challenging communication requirements of advanced manufacturing processes and technologies. In industrial networks, this is possible thanks to the availability of network infrastructure and the presence of a network coordinator that efficiently allocates the available radio resources. In this work, we consider a WSN that simultaneously transmits measurements of Networked Control Systems (NCSs) dynamics to remote state estimators over a shared packet-erasure channel. We develop a minimum transmission power control (TPC) policy for the coordination of the wireless medium by formulating an infinite horizon Markov decision process (MDP) optimization problem. We compute the policy using an approximate value iteration algorithm and provide an extensive evaluation of its parameters in different interference scenarios and NCSs dynamics. The evaluation results present a comprehensive characterization of the algorithms performance, proving that it can flexibly adapt to arbitrary use cases.
114 - Wen Fang , Hao Deng , Qingwen Liu 2021
Integrating the wireless power transfer (WPT) technology into the wireless communication system has been important for operational cost saving and power-hungry problem solving of electronic devices. In this paper, we propose a resonant beam simultaneous wireless information and power transfer (RB-SWIPT) system, which utilizes a gain medium and two retro-reflecting surfaces to enhance and retro-reflect energy, and allows devices to recharge their batteries and exchange information from the resonant beam wirelessly. To reveal the SWIPT mechanism and evaluate the SWIPT performance, we establish an analytical end-to-end (E2E) transmission model based on a modular approach and the electromagnetic field propagation. Then, the intra-cavity power intensity distribution, transmission loss, output power, and E2E efficiency can be obtained. The numerical evaluation illustrates that the exemplary RB-SWIPT system can provide about 4.20W electric power and 12.41bps/Hz spectral efficiency, and shorter transmission distance or larger retro-reflecting surface size can lead to higher E2E efficiency. The RB-SWIPT presents a new way for high-power, long-range WPT, and high-rate communication.
Distribution grid agents are obliged to exchange and disclose their states explicitly to neighboring regions to enable distributed optimal power flow dispatch. However, the states contain sensitive information of individual agents, such as voltage and current measurements. These measurements can be inferred by adversaries, such as other participating agents or eavesdroppers. To address the issue, we propose a privacy-preserving distributed optimal power flow (OPF) algorithm based on partially homomorphic encryption (PHE). First of all, we exploit the alternating direction method of multipliers (ADMM) to solve the OPF in a distributed fashion. In this way, the dual update of ADMM can be encrypted by PHE. We further relax the augmented term of the primal update of ADMM with the $ell_1$-norm regularization. In addition, we transform the relaxed ADMM with the $ell_1$-norm regularization to a semidefinite program (SDP), and prove that this transformation is exact. The SDP can be solved locally with only the sign messages from neighboring agents, which preserves the privacy of the primal update. At last, we strictly prove the privacy preservation guarantee of the proposed algorithm. Numerical case studies validate the effectiveness and exactness of the proposed approach.
Free positioning of receivers is one of the key requirements for many wireless power transfer (WPT) applications, required from the end-user point of view. However, realization of stable and effective wireless power transfer for freely positioned receivers is technically challenging task because of the requirement of complex control and tuning. In this paper, we propose a concept of automatic receiver tracking and power channeling for multi-transmitter WPT systems using uncoupled transmitter and uncoupled repeaters. Each transmitter-repeater pair forms an independent power transfer channel providing an effective link for the power flow from the transmitter to the receiver. The proposed WPT system is capable of maintaining stable output power with constant high efficiency regardless of the receiver position and without having any active control or tuning. The proposed concept is numerically and experimentally verified by using a four-transmitter WPT system in form of a linear array. The experimental results show that the efficiency of the proposed WPT system can reach 94.5% with a variation less than 2% against the receiver position.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا