Do you want to publish a course? Click here

Privacy-Preserving Distributed Optimal Power Flow with Partially Homomorphic Encryption

86   0   0.0 ( 0 )
 Added by Tong Wu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Distribution grid agents are obliged to exchange and disclose their states explicitly to neighboring regions to enable distributed optimal power flow dispatch. However, the states contain sensitive information of individual agents, such as voltage and current measurements. These measurements can be inferred by adversaries, such as other participating agents or eavesdroppers. To address the issue, we propose a privacy-preserving distributed optimal power flow (OPF) algorithm based on partially homomorphic encryption (PHE). First of all, we exploit the alternating direction method of multipliers (ADMM) to solve the OPF in a distributed fashion. In this way, the dual update of ADMM can be encrypted by PHE. We further relax the augmented term of the primal update of ADMM with the $ell_1$-norm regularization. In addition, we transform the relaxed ADMM with the $ell_1$-norm regularization to a semidefinite program (SDP), and prove that this transformation is exact. The SDP can be solved locally with only the sign messages from neighboring agents, which preserves the privacy of the primal update. At last, we strictly prove the privacy preservation guarantee of the proposed algorithm. Numerical case studies validate the effectiveness and exactness of the proposed approach.



rate research

Read More

Set-based estimation has gained a lot of attention due to its ability to guarantee state enclosures for safety-critical systems. However, it requires computationally expensive operations, which in turn often requires outsourcing of these operations to cloud-computing platforms. Consequently, this raises some concerns with regard to sharing sensitive information and measurements. This paper presents the first privacy-preserving set-based estimation protocols using partially homomorphic encryption in which we preserve the privacy of the set of all possible estimates and the measurements. We consider a linear discrete-time dynamical system with bounded modeling and measurement uncertainties without any other statistical assumptions. We represent sets by zonotopes and constrained zonotopes as they can compactly represent high-dimensional sets and are closed under linear maps and Minkowski addition. By selectively encrypting some parameters of the used set representations, we are able to intersect sets in the encrypted domain, which enables guaranteed state estimation while ensuring the privacy goals. In particular, we show that our protocols achieve computational privacy using formal cryptographic definitions of computational indistinguishability. We demonstrate the efficiency of our approach by localizing a mobile quadcopter using custom ultra-wideband wireless devices. Our code and data are available online.
An important issue in todays electricity markets is the management of flexibilities offered by new practices, such as smart home appliances or electric vehicles. By inducing changes in the behavior of residential electric utilities, demand response (DR) seeks to adjust the demand of power to the supply for increased grid stability and better integration of renewable energies. A key role in DR is played by emergent independent entities called load aggregators (LAs). We develop a new decentralized algorithm to solve a convex relaxation of the classical Alternative Current Optimal Power Flow (ACOPF) problem, which relies on local information only. Each computational step can be performed in an entirely privacy-preserving manner, and system-wide coordination is achieved via node-specific distribution locational marginal prices (DLMPs). We demonstrate the efficiency of our approach on a 15-bus radial distribution network.
This paper proposes a robust transient stability constrained optimal power flow problem that addresses renewable uncertainties by the coordination of generation re-dispatch and power flow router (PFR) tuning.PFR refers to a general type of network-side controller that enlarges the feasible region of the OPF problem. The coordination between network-side and generator-side control in the proposed model is more general than the traditional methods which focus on generation dispatch only. An offline-online solution framework is developed to solve the problem efficiently. Under this framework the original problem is significantly simplified, so that we only need to solve a low-dimensional deterministic problem at the online stage to achieve real-time implementation with a high robustness level. The proposed method is verified on the modified New England 39-bus system. Numerical results demonstrate that the proposed method is efficient and shows good performance on economy and robustness.
98 - Qian Lou , Lei Jiang 2021
Recently Homomorphic Encryption (HE) is used to implement Privacy-Preserving Neural Networks (PPNNs) that perform inferences directly on encrypted data without decryption. Prior PPNNs adopt mobile network architectures such as SqueezeNet for smaller computing overhead, but we find naively using mobile network architectures for a PPNN does not necessarily achieve shorter inference latency. Despite having less parameters, a mobile network architecture typically introduces more layers and increases the HE multiplicative depth of a PPNN, thereby prolonging its inference latency. In this paper, we propose a textbf{HE}-friendly privacy-preserving textbf{M}obile neural ntextbf{ET}work architecture, textbf{HEMET}. Experimental results show that, compared to state-of-the-art (SOTA) PPNNs, HEMET reduces the inference latency by $59.3%sim 61.2%$, and improves the inference accuracy by $0.4 % sim 0.5%$.
In this paper, we consider the problem of privacy preservation in the average consensus problem when communication among nodes is quantized. More specifically, we consider a setting where some nodes in the network are curious but not malicious and they try to identify the initial states of other nodes based on the data they receive during their operation (without interfering in the computation in any other way), while some nodes in the network want to ensure that their initial states cannot be inferred exactly by the curious nodes. We propose two privacy-preserving event-triggered quantized average consensus algorithms that can be followed by any node wishing to maintain its privacy and not reveal the initial state it contributes to the average computation. Every node in the network (including the curious nodes) is allowed to execute a privacy-preserving algorithm or its underlying average consensus algorithm. Under certain topological conditions, both algorithms allow the nodes who adopt privacypreserving protocols to preserve the privacy of their initial quantized states and at the same time to obtain, after a finite number of steps, the exact average of the initial states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا