Do you want to publish a course? Click here

Microwave magnetic field modulation of spin torque oscillator based on perpendicular magnetic tunnel junctions

184   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Modulation of a spin-torque oscillator (STO) signal based on a magnetic tunnel junction (MTJ) with perpendicularly magnetized free layer is investigated. Magnetic field inductive loop was created during MTJ fabrication process, which enables microwave field application during STO operation. The frequency modulation by the microwave magnetic field of up to 3 GHz is explored, showing a potential for application in high-data-rate communication technologies. Moreover, an inductive loop is used for self-synchronization of the STO signal, which after field-locking exhibits significant improvement of the linewidth and oscillation power.



rate research

Read More

Temperature plays an important role in spin torque switching of magnetic tunnel junctions causing magnetization fluctuations that decrease the switching voltage but also introduce switching errors. Here we present a systematic study of the temperature dependence of the spin torque switching probability of state-of-the-art perpendicular magnetic tunnel junction nanopillars (40 to 60 nm in diameter) from room temperature down to 4 K, sampling up to a million switching events. The junction temperature at the switching voltage---obtained from the thermally assisted spin torque switching model---saturates at temperatures below about 75 K, showing that junction heating is significant below this temperature and that spin torque switching remains highly stochastic down to 4 K. A model of heat flow in a nanopillar junction shows this effect is associated with the reduced thermal conductivity and heat capacity of the metals in the junction.
Understanding the magnetization dynamics induced by spin transfer torques in perpendicularly magnetized magnetic tunnel junction nanopillars and its dependence on material parameters is critical to optimizing device performance. Here we present a micromagnetic study of spin-torque switching in a disk-shaped element as a function of the free layers exchange constant and disk diameter. The switching is shown to generally occur by 1) growth of the magnetization precession amplitude in the element center; 2) an instability in which the reversing region moves to the disk edge, forming a magnetic domain wall; and 3) the motion of the domain wall across the element. For large diameters and small exchange, step 1 leads to a droplet with a fully reversed core that experiences a drift instability (step 2). While in the opposite case (small diameters and large exchange), the central region of the disk is not fully reversed before step 2 occurs. The origin of the micromagnetic structure is shown to be the disks non-uniform demagnetization field. Faster, more coherence and energy efficient switching occur with larger exchange and smaller disk diameters, showing routes to increase device performance.
We simulate the spin torque-induced reversal of the magnetization in thin disks with perpendicular anisotropy at zero temperature. Disks typically smaller than 20 nm in diameter exhibit coherent reversal. A domain wall is involved in larger disks. We derive the critical diameter of this transition. Using a proper definition of the critical voltage, a macrospin model can account perfectly for the reversal dynamics when the reversal is coherent. The same critical voltage appears to match with the micromagnetics switching voltage regardless of the switching path.
Perpendicular magnetic tunnel junctions (p-MTJs) switched utilizing bipolar electric fields have extensive applications in energy-efficient memory and logic devices. Voltage-controlled magnetic anisotropy linearly lowers the energy barrier of ferromagnetic layer via electric field effect and efficiently switches p-MTJs only with a unipolar behavior. Here we demonstrate a bipolar electric field effect switching of 100-nm p-MTJs with a synthetic antiferromagnetic free layer through voltage-controlled exchange coupling (VCEC). The switching current density, ~1.1x10^5 A/cm^2, is one order of magnitude lower than that of the best-reported spin-transfer torque devices. Theoretical results suggest that electric field induces a ferromagnetic-antiferromagnetic exchange coupling transition of the synthetic antiferromagnetic free layer and generates a field-like interlayer exchange coupling torque, which cause the bidirectional magnetization switching of p-MTJs. A preliminary benchmarking simulation estimates that VCEC dissipates an order of magnitude lower writing energy compared to spin-transfer torque at the 15-nm technology node. These results could eliminate the major obstacle in the development of spin memory devices beyond their embedded applications.
The phenomenon of spin transfer torque (STT) has attracted a great deal of interests due to its promising prospects in practical spintronic devices. In this paper, we report a theoretical investigation of STT in a noncollinear magnetic tunnel junction under ac modulation based on the nonequilibrium Greens function formalism, and derive a closed-formulation for predicting the time-averaged STT. Using this formulation, the ac STT of a carbon-nanotube-based magnetic tunnel junction is analyzed. Under ac modulation, the low-bias linear (quadratic) dependence of the in-plane (out-of-plane) torque on bias still holds, and the $sintheta$ dependence on the noncollinear angle is maintained. By photon-assisted tunneling, the bias-induced components of the in-plane and out-of-plane torques can be enhanced significantly, about 12 and 75 times, respectively. Our analysis reveals the condition for achieving optimized STT enhancement and suggests that ac modulation is a very effective way for electrical manipulation of STT.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا