Do you want to publish a course? Click here

Working Hard or Hardly Working: Challenges of Integrating Typology into Neural Dependency Parsers

111   0   0.0 ( 0 )
 Added by Adam Fisch
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This paper explores the task of leveraging typology in the context of cross-lingual dependency parsing. While this linguistic information has shown great promise in pre-neural parsing, results for neural architectures have been mixed. The aim of our investigation is to better understand this state-of-the-art. Our main findings are as follows: 1) The benefit of typological information is derived from coarsely grouping languages into syntactically-homogeneous clusters rather than from learning to leverage variations along individual typological dimensions in a compositional manner; 2) Typology consistent with the actual corpus statistics yields better transfer performance; 3) Typological similarity is only a rough proxy of cross-lingual transferability with respect to parsing.



rate research

Read More

We introduce two first-order graph-based dependency parsers achieving a new state of the art. The first is a consensus parser built from an ensemble of independently trained greedy LSTM transition-based parsers with different random initializations. We cast this approach as minimum Bayes risk decoding (under the Hamming cost) and argue that weaker consensus within the ensemble is a useful signal of difficulty or ambiguity. The second parser is a distillation of the ensemble into a single model. We train the distillation parser using a structured hinge loss objective with a novel cost that incorporates ensemble uncertainty estimates for each possible attachment, thereby avoiding the intractable cross-entropy computations required by applying standard distillation objectives to problems with structured outputs. The first-order distillation parser matches or surpasses the state of the art on English, Chinese, and German.
We compare two orthogonal semi-supervised learning techniques, namely tri-training and pretrained word embeddings, in the task of dependency parsing. We explore language-specific FastText and ELMo embeddings and multilingual BERT embeddings. We focus on a low resource scenario as semi-supervised learning can be expected to have the most impact here. Based on treebank size and available ELMo models, we select Hungarian, Uyghur (a zero-shot language for mBERT) and Vietnamese. Furthermore, we include English in a simulated low-resource setting. We find that pretrained word embeddings make more effective use of unlabelled data than tri-training but that the two approaches can be successfully combined.
109 - Shuo Huang , Zhuang Li , Lizhen Qu 2021
Semantic parsing maps natural language (NL) utterances into logical forms (LFs), which underpins many advanced NLP problems. Semantic parsers gain performance boosts with deep neural networks, but inherit vulnerabilities against adversarial examples. In this paper, we provide the empirical study on the robustness of semantic parsers in the presence of adversarial attacks. Formally, adversaries of semantic parsing are considered to be the perturbed utterance-LF pairs, whose utterances have exactly the same meanings as the original ones. A scalable methodology is proposed to construct robustness test sets based on existing benchmark corpora. Our results answered five research questions in measuring the sate-of-the-art parsers performance on robustness test sets, and evaluating the effect of data augmentation.
In the pre deep learning era, part-of-speech tags have been considered as indispensable ingredients for feature engineering in dependency parsing. But quite a few works focus on joint tagging and parsing models to avoid error propagation. In contrast, recent studies suggest that POS tagging becomes much less important or even useless for neural parsing, especially when using character-based word representations. Yet there are not enough investigations focusing on this issue, both empirically and linguistically. To answer this, we design and compare three typical multi-task learning framework, i.e., Share-Loose, Share-Tight, and Stack, for joint tagging and parsing based on the state-of-the-art biaffine parser. Considering that it is much cheaper to annotate POS tags than parse trees, we also investigate the utilization of large-scale heterogeneous POS tag data. We conduct experiments on both English and Chinese datasets, and the results clearly show that POS tagging (both homogeneous and heterogeneous) can still significantly improve parsing performance when using the Stack joint framework. We conduct detailed analysis and gain more insights from the linguistic aspect.
Social media hold valuable, vast and unstructured information on public opinion that can be utilized to improve products and services. The automatic analysis of such data, however, requires a deep understanding of natural language. Current sentiment analysis approaches are mainly based on word co-occurrence frequencies, which are inadequate in most practical cases. In this work, we propose a novel hybrid framework for concept-level sentiment analysis in Persian language, that integrates linguistic rules and deep learning to optimize polarity detection. When a pattern is triggered, the framework allows sentiments to flow from words to concepts based on symbolic dependency relations. When no pattern is triggered, the framework switches to its subsymbolic counterpart and leverages deep neural networks (DNN) to perform the classification. The proposed framework outperforms state-of-the-art approaches (including support vector machine, and logistic regression) and DNN classifiers (long short-term memory, and Convolutional Neural Networks) with a margin of 10-15% and 3-4% respectively, using benchmark Persian product and hotel reviews corpora.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا