No Arabic abstract
We introduce two first-order graph-based dependency parsers achieving a new state of the art. The first is a consensus parser built from an ensemble of independently trained greedy LSTM transition-based parsers with different random initializations. We cast this approach as minimum Bayes risk decoding (under the Hamming cost) and argue that weaker consensus within the ensemble is a useful signal of difficulty or ambiguity. The second parser is a distillation of the ensemble into a single model. We train the distillation parser using a structured hinge loss objective with a novel cost that incorporates ensemble uncertainty estimates for each possible attachment, thereby avoiding the intractable cross-entropy computations required by applying standard distillation objectives to problems with structured outputs. The first-order distillation parser matches or surpasses the state of the art on English, Chinese, and German.
We compare two orthogonal semi-supervised learning techniques, namely tri-training and pretrained word embeddings, in the task of dependency parsing. We explore language-specific FastText and ELMo embeddings and multilingual BERT embeddings. We focus on a low resource scenario as semi-supervised learning can be expected to have the most impact here. Based on treebank size and available ELMo models, we select Hungarian, Uyghur (a zero-shot language for mBERT) and Vietnamese. Furthermore, we include English in a simulated low-resource setting. We find that pretrained word embeddings make more effective use of unlabelled data than tri-training but that the two approaches can be successfully combined.
This paper explores the task of leveraging typology in the context of cross-lingual dependency parsing. While this linguistic information has shown great promise in pre-neural parsing, results for neural architectures have been mixed. The aim of our investigation is to better understand this state-of-the-art. Our main findings are as follows: 1) The benefit of typological information is derived from coarsely grouping languages into syntactically-homogeneous clusters rather than from learning to leverage variations along individual typological dimensions in a compositional manner; 2) Typology consistent with the actual corpus statistics yields better transfer performance; 3) Typological similarity is only a rough proxy of cross-lingual transferability with respect to parsing.
We describe the ADAPT system for the 2020 IWPT Shared Task on parsing enhanced Universal Dependencies in 17 languages. We implement a pipeline approach using UDPipe and UDPipe-future to provide initial levels of annotation. The enhanced dependency graph is either produced by a graph-based semantic dependency parser or is built from the basic tree using a small set of heuristics. Our results show that, for the majority of languages, a semantic dependency parser can be successfully applied to the task of parsing enhanced dependencies. Unfortunately, we did not ensure a connected graph as part of our pipeline approach and our competition submission relied on a last-minute fix to pass the validation script which harmed our official evaluation scores significantly. Our submission ranked eighth in the official evaluation with a macro-averaged coarse ELAS F1 of 67.23 and a treebank average of 67.49. We later implemented our own graph-connecting fix which resulted in a score of 79.53 (language average) or 79.76 (treebank average), which would have placed fourth in the competition evaluation.
Dependency parsing is a longstanding natural language processing task, with its outputs crucial to various downstream tasks. Recently, neural network based (NN-based) dependency parsing has achieved significant progress and obtained the state-of-the-art results. As we all know, NN-based approaches require massive amounts of labeled training data, which is very expensive because it requires human annotation by experts. Thus few industrial-oriented dependency parser tools are publicly available. In this report, we present Baidu Dependency Parser (DDParser), a new Chinese dependency parser trained on a large-scale manually labeled dataset called Baidu Chinese Treebank (DuCTB). DuCTB consists of about one million annotated sentences from multiple sources including search logs, Chinese newswire, various forum discourses, and conversation programs. DDParser is extended on the graph-based biaffine parser to accommodate to the characteristics of Chinese dataset. We conduct experiments on two test sets: the standard test set with the same distribution as the training set and the random test set sampled from other sources, and the labeled attachment scores (LAS) of them are 92.9% and 86.9% respectively. DDParser achieves the state-of-the-art results, and is released at https://github.com/baidu/DDParser.
We describe the DCU-EPFL submission to the IWPT 2021 Shared Task on Parsing into Enhanced Universal Dependencies. The task involves parsing Enhanced UD graphs, which are an extension of the basic dependency trees designed to be more facilitative towards representing semantic structure. Evaluation is carried out on 29 treebanks in 17 languages and participants are required to parse the data from each language starting from raw strings. Our approach uses the Stanza pipeline to preprocess the text files, XLMRoBERTa to obtain contextualized token representations, and an edge-scoring and labeling model to predict the enhanced graph. Finally, we run a post-processing script to ensure all of our outputs are valid Enhanced UD graphs. Our system places 6th out of 9 participants with a coarse Enhanced Labeled Attachment Score (ELAS) of 83.57. We carry out additional post-deadline experiments which include using Trankit for pre-processing, XLM-RoBERTa-LARGE, treebank concatenation, and multitask learning between a basic and an enhanced dependency parser. All of these modifications improve our initial score and our final system has a coarse ELAS of 88.04.