No Arabic abstract
Alternating current RLC electric circuits form an accessible and highly tunable platform simulating Hermitian as well as non-Hermitian (nH) quantum systems. We propose here a circuit realization of nH Dirac and Weyl Hamiltonians subject to time-reversal invariant pseudo-magnetic field, enabling the exploration of novel nH physics. We identify the low-energy physics with a generic real energy spectrum from the nH Landau quantization of exceptional points and rings, which can avoid the nH skin effect and provides a physical example of a quasiparticle moving in the complex plane. Realistic detection schemes are designed to probe the flat energy bands, sublattice polarization, edge states protected by a nH energy-reflection symmetry, and a characteristic nodeless probability distribution.
Robust boundary states epitomize how deep physics can give rise to concrete experimental signatures with technological promise. Of late, much attention has focused on two distinct mechanisms for boundary robustness - topological protection, as well as the non-Hermitian skin effect. In this work, we report the first experimental realizations of hybrid higher-order skin-topological effect, in which the skin effect selectively acts only on the topological boundary modes, not the bulk modes. Our experiments, which are performed on specially designed non-reciprocal 2D and 3D topolectrical circuit lattices, showcases how non-reciprocal pumping and topological localization dynamically interplays to form various novel states like 2D skin-topological, 3D skin-topological-topological hybrid states, as well as 2D and 3D higher-order non-Hermitian skin states. Realized through our highly versatile and scalable circuit platform, theses states have no Hermitian nor lower-dimensional analog, and pave the way for new applications in topological switching and sensing through the simultaneous non-trivial interplay of skin and topological boundary localizations.
The usual concepts of topological physics, such as the Berry curvature, cannot be applied directly to non-Hermitian systems. We show that another object, the quantum metric, which often plays a secondary role in Hermitian systems, becomes a crucial quantity near exceptional points in non-Hermitian systems, where it diverges in a way that fully controls the description of wavepacket trajectories. The quantum metric behaviour is responsible for a constant acceleration with a fixed direction, and for a non-vanishing constant velocity with a controllable direction. Both contributions are independent of the wavepacket size.
An astroid-shaped loop of exceptional points (EPs), comprising four cusps, is found to spawn from the triple degeneracy point in the Brillouin zone (BZ) of a Lieb lattice with nearest-neighbor hoppings when non-Hermiticity is introduced. The occurrence of the EP loop is due to the realness of the discriminant which is guaranteed by the non-Hermitian chiral symmetry. The EPs at the four cusps involve the coalescence of three eigenstates, which is the combined result of the non-Hermitian chiral symmetry and mirror-T symmetry. The EP loop is exactly an astroid in the limit of an infinitesimal non-Hermiticity. The EP loop expands from the $M$ point with increasing non-Hermiticity and splits into two EP loops at a critical non-Hermiticity. The further increase of non-Hermiticity contracts the two EP loops towards and finally to two EPs at the $X$ and $Y$ points in the BZ, accompanied by the emergence of Dirac-like cones. The two EPs vanish at a larger non-Hermiticity. The EP loop disappears and several discrete EPs are found to survive when next-nearest hoppings are introduced to break the non-Hermitian chiral symmetry. A topological invariant called the discriminant number is used to characterize their robustness against perturbations. Both discrete EPs and those on the EP loop(s) are found to show anisotropic asymptotic behaviors. Finally, the experimental realization of the Lieb lattice using a coupled waveguide array is discussed.
We study a new class of non-Hermitian topological phases in three dimension in the absence of any symmetry, where the topological robust band degeneracies are Hopf-link exceptional lines. As a concrete example, we investigate the non-Hermitian band structures of nodal line semimetals under non-Hermitian perturbations, where the Fermi surfaces can transit from 1d nodal lines to 2d twisting surfaces with Hopf-link boundaries when the winding number defined along the nodal line is $pm 1$. The linking numbers of these linked exceptional line phases are also proposed, based on the integral of Chern-Simons form over the Brillouin zone.
Topological stability of the edge states is investigated for non-Hermitian systems. We examine two classes of non-Hermitian Hamiltonians supporting real bulk eigenenergies in weak non-Hermiticity: SU(1,1) and SO(3,2) Hamiltonians. As an SU(1,1) Hamiltonian, the tight-binding model on the honeycomb lattice with imaginary on-site potentials is examined. Edge states with ReE=0 and their topological stability are discussed by the winding number and the index theorem, based on the pseudo-anti-Hermiticity of the system. As a higher symmetric generalization of SU(1,1) Hamiltonians, we also consider SO(3,2) models. We investigate non-Hermitian generalization of the Luttinger Hamiltonian on the square lattice, and that of the Kane-Mele model on the honeycomb lattice, respectively. Using the generalized Kramers theorem for the time-reversal operator Theta with Theta^2=+1 [M. Sato et al., arXiv:1106.1806], we introduce a time-reversal invariant Chern number from which topological stability of gapless edge modes is argued.