No Arabic abstract
Robust boundary states epitomize how deep physics can give rise to concrete experimental signatures with technological promise. Of late, much attention has focused on two distinct mechanisms for boundary robustness - topological protection, as well as the non-Hermitian skin effect. In this work, we report the first experimental realizations of hybrid higher-order skin-topological effect, in which the skin effect selectively acts only on the topological boundary modes, not the bulk modes. Our experiments, which are performed on specially designed non-reciprocal 2D and 3D topolectrical circuit lattices, showcases how non-reciprocal pumping and topological localization dynamically interplays to form various novel states like 2D skin-topological, 3D skin-topological-topological hybrid states, as well as 2D and 3D higher-order non-Hermitian skin states. Realized through our highly versatile and scalable circuit platform, theses states have no Hermitian nor lower-dimensional analog, and pave the way for new applications in topological switching and sensing through the simultaneous non-trivial interplay of skin and topological boundary localizations.
Hermitian theories play a major role in understanding the physics of most phenomena. It has been found only in the past decade that non-Hermiticity enables unprecedented effects such as exceptional points, spectral singularities and bulk Fermi arcs. Recent studies further show that non-Hermiticity can fundamentally change the topological band theory, leading to the non-Hermitian band topology and non-Hermitian skin effect, as confirmed in one-dimensional (1D) systems. However, in higher dimensions, these non-Hermitian effects remain unexplored in experiments. Here, we demonstrate the spin-polarized, higher-order non-Hermitian skin effect in two-dimensional (2D) acoustic metamaterials. Using a lattice of coupled whisper-gallery acoustic resonators, we realize a spinful 2D higher-order topological insulator (HOTI) where the spin-up and spin-down states are emulated by the anti-clockwise and clockwise modes, respectively. We find that the non-Hermiticity drives wave localizations toward opposite edge boundaries depending on the spin polarizations. More interestingly, for finite systems with both edge and corner boundaries, the higher-order non-Hermitian skin effect leads to wave localizations toward two corner boundaries for the bulk, edge and corner states in a spin-dependent manner. We further show that such a non-Hermitian skin effect enables rich wave manipulation through the loss configuration in each unit-cell. The reported spin-dependent, higher-order non-Hermitian skin effect reveals the interplay between higher-order topology and non-Hermiticity, which is further enriched by the spin degrees of freedom. This unveils a new horizon in the study of non-Hermitian physics and the design of non-Hermitian metamaterials.
Far from being limited to a trivial generalization of their Hermitian counterparts, non-Hermitian topological phases have gained widespread interest due to their unique properties. One of the most striking non-Hermitian phenomena is the skin effect, i.e., the localization of a macroscopic fraction of bulk eigenstates at a boundary, which underlies the breakdown of the bulk-edge correspondence. Here we investigate the emergence of the skin effect in magnetic insulating systems by developing a phenomenological approach to describing magnetic dissipation within a lattice model. Focusing on a spin-orbit-coupled van der Waals (vdW) ferromagnet with spin-nonconserving magnon-phonon interactions, we find that the magnetic skin effect emerges in an appropriate temperature regime. Our results suggest that the interference between Dzyaloshinskii-Moriya interaction (DMI) and nonlocal magnetic dissipation plays a key role in the accumulation of bulk states at the boundaries.
Skin effect, experimentally discovered in one dimension, describes the physical phenomenon that on an open chain, an extensive number of eigenstates of a non-Hermitian hamiltonian are localized at the end(s) of the chain. Here in two and higher dimensions, we establish a theorem that the skin effect exists, if and only if periodic-boundary spectrum of the hamiltonian covers a finite area on the complex plane. This theorem establishes the universality of the effect, because the above condition is satisfied in almost every generic non-Hermitian hamiltonian, and, unlike in one dimension, is compatible with all spatial symmetries. We propose two new types of skin effect in two and higher dimensions: the corner-skin effect where all eigenstates are localized at one corner of the system, and the geometry-dependent-skin effect where skin modes disappear for systems of a particular shape, but appear on generic polygons. An immediate corollary of our theorem is that any non-Hermitian system having exceptional points (lines) in two (three) dimensions exhibits skin effect, making this phenomenon accessible to experiments in photonic crystals, Weyl semimetals, and Kondo insulators.
We demonstrate that dislocations in two-dimensional non-Hermitian systems can give rise to density accumulation or depletion through the localization of an extensive number of states. These effects are shown by numerical simulations in a prototype lattice model and expose a completely new face of non-Hermitian skin effect, by disentangling it from the need for boundaries. We identify a topological invariant responsible for the dislocation skin effect, which takes the form of a ${mathbb Z}_2$ Hopf index that depends on the Burgers vector characterizing the dislocations. Remarkably, we find that this effect and its corresponding signature for defects in Hermitian systems falls outside of the known topological classification based on bulk-defect correspondence.
Alternating current RLC electric circuits form an accessible and highly tunable platform simulating Hermitian as well as non-Hermitian (nH) quantum systems. We propose here a circuit realization of nH Dirac and Weyl Hamiltonians subject to time-reversal invariant pseudo-magnetic field, enabling the exploration of novel nH physics. We identify the low-energy physics with a generic real energy spectrum from the nH Landau quantization of exceptional points and rings, which can avoid the nH skin effect and provides a physical example of a quasiparticle moving in the complex plane. Realistic detection schemes are designed to probe the flat energy bands, sublattice polarization, edge states protected by a nH energy-reflection symmetry, and a characteristic nodeless probability distribution.