No Arabic abstract
We present a calculation of the pion valence quark distribution extracted using the formalism of reduced Ioffe time pseudo-distributions or more commonly known as pseudo-PDFs. Our calculation is carried out on two different 2+1 flavor QCD ensembles using the isotropic-clover fermion action, with lattice dimensions $24^3times 64$ and $32^3times 96$ at the lattice spacing of $a=0.127$ fm, and with the quark mass equivalent to a pion mass of $m_pi simeq 415$ MeV. We incorporate several combinations of smeared-point and smeared-smeared pion source-sink interpolation fields in obtaining the lattice QCD matrix elements using the summation method. After one-loop perturbative matching and combining the pseudo-distributions from these two ensembles, we extract the pion valence quark distribution using a phenomenological functional form motivated by the global fits of parton distribution functions. We also calculate the lowest four moments of the pion quark distribution through the OPE without OPE. We present a qualitative comparison between our lattice QCD extraction of the pion valence quark distribution with that obtained from global fits and previous lattice QCD calculations.
We investigate unpolarized and polarized gluon distributions and their applications to the Ioffe-time distributions, which are related to lattice QCD calculations of parton distribution functions. Guided by the counting rules based on the perturbative QCD at large momentum fraction $x$ and the color coherence of gluon couplings at small $x$, we parametrize gluon distributions in the helicity basis. By fitting the unpolarized gluon distribution, the inferred polarized gluon distribution from our parametrization agrees with the one from global analysis. A simultaneous fit to both unpolarized and polarized gluon distributions is also performed to explore the model uncertainty. The agreement with the global analysis supports the $(1-x)$ power suppression of the helicity-antialigned distribution relative to the helicity-aligned distribution. The corresponding Ioffe-time distributions and their asymptotic expansions are calculated from the gluon distributions. Our results of the Ioffe-time distributions can provide guidance to the extrapolation of lattice QCD data to the region lacking precise gluonic matrix elements. Therefore, they can help regulate the ill-posed inverse problem associated with extracting the gluon distributions from discrete data from first-principle calculations, which are available in a limited range of the nucleon momentum and the spatial separation between the gluonic currents. Given various limitations in obtaining lattice QCD data at large Ioffe time, phenomenological approaches can provide important complementary information to extract the gluon distributions in the entire $x$ region. The possibility of investigating higher-twist effects and other systematic uncertainties in the contemporary first-principle calculations of parton distributions from phenomenologically well-determined Ioffe-time distributions in the large Ioffe-time region is also discussed.
The computation of the parton distribution functions (PDF) or distribution amplitudes (DA) of hadrons from first principles lattice QCD constitutes a central open problem. In this study, we present and evaluate the efficiency of a selection of methods for inverse problems to reconstruct the full $x$-dependence of PDFs. Our starting point are the so called Ioffe time PDFs, which are accessible from Euclidean time calculations in conjunction with a matching procedure. Using realistic mock data tests, we find that the ill-posed incomplete Fourier transform underlying the reconstruction requires careful regularization, for which both the Bayesian approach as well as neural networks are efficient and flexible choices.
We present results for the unpolarized parton distribution function of the nucleon computed in lattice QCD at the physical pion mass. This is the first study of its kind employing the method of Ioffe time pseudo-distributions. Beyond the reconstruction of the Bjorken-$x$ dependence we also extract the lowest moments of the distribution function using the small Ioffe time expansion of the Ioffe time pseudo-distribution. We compare our findings with the pertinent phenomenological determinations.
We present the first exploratory lattice QCD calculation of the pion valence quark distribution extracted from spatially separated current-current correlations in coordinate space. We show that an antisymmetric combination of vector and axial-vector currents provides direct information on the pion valence quark distribution. Using the collinear factorization approach, we calculate the perturbative tree-level kernel for this current combination and extract the pion valence distribution. The main goal of this article is to demonstrate the efficacy of this general lattice QCD approach in the reliable extraction of parton distributions. With controllable power corrections and a good understanding of the lattice systematics, this method has the potential to serve as a complementary to the many efforts to extract parton distributions in global analyses from experimentally measured cross sections. We perform our calculation on an ensemble of 2+1 flavor QCD using the isotropic-clover fermion action, with lattice dimensions $32^3times 96$ at a lattice spacing mbox{$a=0.127$ fm} and the quark mass equivalent to a pion mass $m_pi simeq 416$ MeV.
We present the first lattice-QCD calculation of the kaon valence-quark distribution functions using the large-momentum effective theory (LaMET) approach. The calculation is performed with multiple pion masses with the lightest one around 220 MeV, 2 lattice spacings $a=0.06$ and 0.12 fm, $(M_pi)_text{min} L approx 5.5$, and high statistics ranging from 11,600 to 61,312 measurements. We also calculate the valence-quark distribution of pion and find it to be consistent with the FNAL E615 experimental results, and our ratio of the $u$ quark PDF in the kaon to that in the pion agrees with the CERN NA3 experiment. We also make predictions of the strange-quark distribution of the kaon.